pervect said:
...
Global synchronizations *which follow the Einstein convention* don't exist. Someone, possibly AT, is probably going to object "but I can use non-Einstein synchronizations" at some point in the discussion. However, one wouldn't want to use such synchronizations to measure velocities.
I thought you had better intuition than that, Pervect. You should have known it would be me!

First of all, the Einstein synchronisation method has the explicit assumption that the speed of light is constant and isotropic in all directions. This is clearly not the case as far as a rotating disk is concerned. If a disk is rotating clockwise in the non rotating frame, then a clockwise going light signal sent from a source fixed to the disk, takes longer to go around the perimeter and return to the source than a signal sent from the same source going in the opposite direction. Therefore the speed of light is not isotropic in the rotating frame even when using a single clcok and the Einstein synchronisation method is invalid and simply does not work.
Now we can find a synchronisation method that has the property you described in post 55, of being "transitive". It simply requires all clocks fixed to the perimeter of the rotating disk to be started by a single start signal sent from an omni-directional source located at the axis of the disk. Of course, using such a synchronisation scheme, will mean that the speed of light is not isotropic according to observers in the rotating frame even on a small local scale.
pervect said:
...
It's also possible to mess up distance measurements by using non-Einstein synchronizations, this is more a matter of taking proper care. Personally, I think the best approach for defining distance is to use radar measurements, which is what the SI standard more or less does anyway by defining 'c' as a constant. If we can get a general agreement that any good distance measurement scheme is equivalent to a radar measurement for "close enough" points, I'll feel that we are all on the same definitional page.
The radar method will not work, or at least it will not work any better than the proper distance measurement of space by using rulers at rest in the rotating frame as championed by A.T. For example, if a radar light source located on the rim sends a signal to a mirror located further along the rim of the disk in a clockwise direction, we could adjust the location of the mirror until it takes 2 femto-seconds for the radar pulse to return to the radar source and define the location of the finely positioned mirror as being 1 femto-lightsecond from the radar source. Using this radar method produces identical length measurements to those produced by simply using a ruler at rest with the rotating disk. Additionally we see a failure of the SI standard of defining length as the distance traveled by a light in a given time interval. By timing the period it takes a light signal to go around the perimeter of the disk and return to the source located on the rotating disk, the SI method defines the clockwise circumference to be greater than the anti-clockwise circumference. At least the A.T. proper ruler measurement produces the same distance measurement in either direction. It would seem that your desire for a definition of length that "is equivalent to a radar measurement for 'close enough' points" would be more sympathetic to the proper definition of length as championed by A.T. than the formal definition of length championed by Fredrick.
It would seem that Fredrick has the moral/formal high ground in his definition of spatial distance as being the difference between two events that are measured simultaneously in the a given reference frame and the proper ruler method of measuring the disk circumference does not meet that requirement.
In SR, the purely spatial interval dx is defined as the interval between two events when dt is zero. This definition coincides with proper distance being defined as the distance measured by a physical ruler at rest in the reference frame. This equivalence between spatial interval dx and proper distance breaks down in accelerating reference frames and the arguments in this thread seem to be basically about which method is the better definition of spatial distance in an accelerating reference frame.
Perhaps the arguments in this thread could be made clearer by considering an ideal numerical experiment and asking what the various parties predict the numerical spatial circumference of the rotating disk to be.
Experiment:
Disk radius = 1 light second in the non rotating frame.
Instantaneous velocity of a point of the rim of the rotating disk is 0.8c clockwise, relative to an observer just outside the disk in the non rotating frame.
Gamma = 1/0.6
Circumference = 2*pi*r = 6.28318531 lightseconds in the non rotating frame.
A.T. proper distance circumference:
2*pi*r*gamma = 10.4719755 lightseconds. (Same in both directions.)
Transitive sychronisation method:
Same circumference as A.T. proper distance.
Speed of light is anisotropic (0.555555556 c clockwise and 5.0 c anti-clockwise).
Radar circumference distance (SI standard):
2*pi*r*c/(c-v)/gamma = 18.8495559 lightseconds (Clockwise).
2*pi*r*c/(c+v)/gamma = 2.0943951 lightseconds (Anti-clockwise).
Speed of light is isotropic (c).
Fredrick circumference (dt=zero):
I will let Fredrick work out what this predicts ;)