I Lorentz transformations: 1+1 spacetime only

Click For Summary
The discussion centers on the challenges of understanding Lorentz transformations beyond 1+1 spacetime dimensions, particularly in 2+1 and 3+1 dimensions. The original poster, a group theorist, expresses frustration over the lack of a coherent physical interpretation of the Lorentz group in higher dimensions, despite their familiarity with the mathematical aspects. Participants highlight that while the Lorentz group is effective in 1+1 dimensions, its application becomes problematic in 2+1 and 3+1 dimensions, raising questions about the assumptions underlying these transformations. The conversation also touches on the importance of experimental validation in determining the applicability of these theories, with some arguing that many experiments effectively operate within a simplified dimensional framework. Ultimately, the thread emphasizes the need for a deeper exploration of the physical implications of the Lorentz transformations as they relate to real-world observations.
  • #91
robwilson said:
1+1 dimensions, where we are talking about 2 independent observers. I struggle in 2+1 dimensions, where we have three independent observers. In 3+1 dimensions, with four independent observers

This makes no sense to me. What does the number of spacetime dimensions have to do with the number of observers?
 
  • Like
Likes vela, vanhees71, weirdoguy and 2 others
Physics news on Phys.org
  • #92
robwilson said:
from the one-dimensional Lorentz transformations it is impossible to infer what the two-dimensional group is. Therefore there is a physical assumption going into the process somewhere.

I would assume that the added assumption has to do with invariance under purely spatial rotations, which don't exist in 1+1 spacetime but do exist when there are two or more spatial dimensions. We know that spatial rotations form a group, so then we just have to figure out what larger group includes spatial rotations as a subgroup and also includes Lorentz boosts. The usual definition of "Lorentz transformations" includes spatial rotations (I have seen the group of such transformations referred to as "spacetime rotations") because that group (the proper orthochronous Lorentz group, as I referred to it in a previous post) is the smallest one that includes both spatial rotations and boosts (but, as already noted by @vanhees71, boosts only form a subgroup if we restrict to boosts in a single direction).
 
  • Like
Likes vanhees71
  • #93
The OP considers that this thread has outlived its usefulness. I thank those people who provided useful responses. Those from physicists and engineers trying to teach a group theorist how to do group theory were not useful, and were frankly insulting. Those from people unwilling to distinguish between physical reality and our current best fit mathematical models of reality merely muddied the waters. I notice that many of you have visited my blog, in which I explain the problem as I see it, and the wider context, and perhaps some of you have looked at my three recent papers on the arXiv, where I explain the group theory in detail. I do not claim to have any answers, but I do claim to be asking the right questions.
 
  • Skeptical
  • Sad
Likes Greg Bernhardt, Vanadium 50, PeroK and 1 other person
  • #94
robwilson said:
my three recent papers on the arXiv, where I explain the group theory in detail. I do not claim to have any answers, but I do claim to be asking the right questions.

In any case, you are pursuing your research, and time will tell whether it is useful. Best of luck to you in your endeavors.

Thread closed.
 
  • Like
Likes Greg Bernhardt and vanhees71

Similar threads

Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 60 ·
3
Replies
60
Views
5K
Replies
10
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K