(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Maclaurin series for square root (1+x)

2. Relevant equations

3. The attempt at a solution

I attempted to find the maclaurin series for the function Square root of 1+x.

F(0)=1 first term= 1

F'(0)=1/2 second term= (1/2)x

F''(0)=-1/4 Third term (-1/4)x^2

F'''(0)=3/8 fourth term (3/8*3!) x^3

F''''(0)=15/16 fifth (-15/16*4!) x^4

F'''''(0)105/32 six (105/32*5!) x^5

Therefore,

f(x)= 1+ (1/2)x + (-1/4)x^2 + (3/8*3!) x^3 + (-15/16*4!) x^4 + (105/32*5!) x^5

The problem is to find generalize term .

I have ( ((-1)^(n-1)) * something *x^n) / ((2^n) * (n!))

I cannot find that "something". because it exists as 1 for the first, second, and the third term , but then it increases to 3,15, 105

so the previous term increases by factor of 3,5,7.... (somewhat recursive?)

Help..

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Maclaurin series for square root (1+x)

**Physics Forums | Science Articles, Homework Help, Discussion**