Magnetic field and displacement current

  • Thread starter crx
  • Start date
  • #1
crx
81
0
Is there really a magnetic field around a capacitors (parallel plate) in vacuum dielectric fed by a variable voltage? Is there an experiment that can prove that we don't need actually a moving electrical charge to create a magnetic field, but a variable electric field in vacuum its enough?
 

Answers and Replies

  • #2
4,662
6
The relation between charge Q and voltage V on a capacitor C is
Q = CV
The derivative is
dQ/dt = I = C dV/dt

So it requires a current I to produce a variable voltage dV/dt on a capacitor. So there is a moving electrical charge around the capacitor.
Bob S
 
  • #3
4,662
6
Here is an example of the displacement current creating a real current. Take an air capacitor C with gap d and area A. Put and maintain a voltage V on it. So the charge
Q = CV = e0AV/d.
Now insert a dielectric of relative permittivity e and thickness d and area A in the capacitor. Now
Q' = C'V
where C = ee0A/d
There is a current in the external circuit that increases the charge Q on the plates to maintain the voltage V on the capacitor.
Bob S
 
  • #4
crx
81
0
Here is an example of the displacement current creating a real current. Take an air capacitor C with gap d and area A. Put and maintain a voltage V on it. So the charge
Q = CV = e0AV/d.
Now insert a dielectric of relative permittivity e and thickness d and area A in the capacitor. Now
Q' = C'V
where C = ee0A/d
There is a current in the external circuit that increases the charge Q on the plates to maintain the voltage V on the capacitor.
Bob S

Yes,but this is because of the dielectric molecules are shielding and weakening the electric field, so the capacitor will need more charges to reach the power supply voltage, so there will be a current in the external circuit.
What i would like to know is that if a plate capacitor with no dielectric in vacuum (with a pretty large gap ), connected to a AC supply, will have a magnetic field exactly in the area between the plates where there are no moving charges, but only variable electric field...
 
  • #5
4,662
6
Yes,but this is because of the dielectric molecules are shielding and weakening the electric field, so the capacitor will need more charges to reach the power supply voltage, so there will be a current in the external circuit.
What i would like to know is that if a plate capacitor with no dielectric in vacuum (with a pretty large gap ), connected to a AC supply, will have a magnetic field exactly in the area between the plates where there are no moving charges, but only variable electric field...
From Maxwells equations,
Curl H = sigma E + e e0 dE/dt = e e0/d dV/dt,
so a varying voltage across the capacitor creates a magnetic field, even when the conductivity sigma = 0.
Bob S
 

Related Threads on Magnetic field and displacement current

Replies
1
Views
3K
Replies
26
Views
10K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
7
Views
2K
Replies
2
Views
3K
Replies
16
Views
22K
Replies
53
Views
34K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
2
Views
565
Replies
24
Views
4K
Top