- #1
- 1
- 0
Hi !
Does [itex]\vec{H}=\frac{1}{\eta}\hat{k}\times \vec{E}[/itex] always suit an electromagnetic wave ?
Because I'm getting some inconsistency for a circular wave
For instance:
[itex]\vec{E}=E_0(\hat{e}_x+e^{j\frac{\pi}{2}}\hat{e}_y)e^{-jkz}[/itex] (propagating [itex]\hat{e}_z[/itex])
[itex]\Rightarrow\vec{H}=\frac{E_0}{\eta}(\hat{e}_y-e^{j\frac{\pi}{2}}\hat{e}_x)e^{-jkz}[/itex]
The poynting vector results:
[itex]\vec{S}=\vec{E}\times\vec{H}=\frac{E^2_0}{\eta}e^{-2jkz}(1+e^{j\pi})\hat{e}_z=\vec{0}[/itex] which is quite disconcerting :/
Thx a lot for your help !
Does [itex]\vec{H}=\frac{1}{\eta}\hat{k}\times \vec{E}[/itex] always suit an electromagnetic wave ?
Because I'm getting some inconsistency for a circular wave
For instance:
[itex]\vec{E}=E_0(\hat{e}_x+e^{j\frac{\pi}{2}}\hat{e}_y)e^{-jkz}[/itex] (propagating [itex]\hat{e}_z[/itex])
[itex]\Rightarrow\vec{H}=\frac{E_0}{\eta}(\hat{e}_y-e^{j\frac{\pi}{2}}\hat{e}_x)e^{-jkz}[/itex]
The poynting vector results:
[itex]\vec{S}=\vec{E}\times\vec{H}=\frac{E^2_0}{\eta}e^{-2jkz}(1+e^{j\pi})\hat{e}_z=\vec{0}[/itex] which is quite disconcerting :/
Thx a lot for your help !