Magnetic Field using Ampere's Law

  • #1
I find Ampere's Circuital Law sort of fishy. I don't understand what the actual theory proposes. And the loop that should be taken into consideration adds much to the confusion. How should we select the loop?

And in the case of a long wire we find the magnetic field around it by applying ##B.2\pi r= \mu_o i_{enc}##. So how do we find the magnetic field due to a short wire (which is not long or infinitely long)?
Using Biot Savart Law we find the magnetic field due to a short wire as ##\mu_o/4\pi r (cos\theta_1-cos\theta_2)##
where ##cos\theta_1## and ##cos\theta_2## are the angles between the length vector (towards the direction of current) and the position vector at the extreme ends.
 

Answers and Replies

  • #2
1,184
223
Yes, using Biot-Savart Law is a way to go here. About integration procedures for particular examples ask in math calculus section.
 
  • #3
jim hardy
Science Advisor
Gold Member
Dearly Missed
9,839
4,881
I find Ampere's Circuital Law sort of fishy. I don't understand what the actual theory proposes. And the loop that should be taken into consideration adds much to the confusion. How should we select the loop?
Fishy ?

As a kid did you never tinker with iron filings and a battery?

Ampere allows one to put a number on this phenomenon...
ironfilingsaroundwire.jpg

http://coe.kean.edu/~afonarev/Physics/Magnetism/Magnetic Fields and Forces-eL.htm

There's no overwhelming reason to chose any particular closed loop path in air
so i'd pick one that makes for a not-very-cumbersome integral

but in solving a practical problem like a transformer ,,

Two%20solenoids,%20B-field_5H15.40_JPG.jpg

https://sharepoint.umich.edu/lsa/physics/demolab/SitePages/5H15.40 - Projection of the Magnetic Field Due to a Current in a Solenoid.aspx

you'd probably find it handy to pick a path through the middle (or centroid) of its iron core.

I guess using a clamp-on ammeter sorta made it intuitive for me...

http://www.sears.com/craftsman-digital-clamp-on-ammeter/p-03482369000P
http://c.shld.net/rpx/i/s/i/spin/image/spin_prod_1113787012?hei=444&wid=444&op_sharpen=1
 
  • Like
Likes I_am_learning
  • #4
But I would like to know, why do we obtain the answer for a particular case (here, the magnetic field due to a long wire) using Ampere's Law. I mean if we are asked to find the magnetic field due to a short wire how do we do it? (I heard that Ampere's Law is the general rule for finding the magnetic field than the Biot-Savart Law)?
 
  • #5
1,184
223
To call Ampere's law "fishy" is a very bad choice of words. Ampere's Law and Biot-Savart Law are equivivalent in magnetostatics (meaning one can be derived from another). Which one do you choose to use depends on the problem's geometry. In your example of finitely long straight wire, Biot-Savart Law is more convinient to use.
 
  • Like
Likes jim hardy

Related Threads on Magnetic Field using Ampere's Law

Replies
4
Views
915
Replies
2
Views
2K
  • Last Post
Replies
1
Views
471
  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
11
Views
3K
  • Last Post
Replies
1
Views
2K
Replies
4
Views
4K
Replies
36
Views
6K
Replies
3
Views
603
Top