- #1

- 1,026

- 0

**[SOLVED] Magnetic Fields, Deuterium and curved tracks**

## Homework Statement

A deuteron (the nucleus of an isotope of hydrogen) has a mass of [tex] m_D [/tex] and a charge of e. The deuteron travels in a circular path with a radius of r in a magnetic field with a magnitude of B.

Find the time required for it to make 1/2 of a revolution.

## Homework Equations

Cyclotron frequency: [tex] \omega = \frac{v}{R} [/tex]

## The Attempt at a Solution

IO have already calculated the velocity in the previous part to be:

[tex] \frac{reB}{m_D} [/tex]

Frequncy is 1/Period, so I get

[tex] period = \frac{1}{\frac{v}{R}} = \frac{R}{v} [/tex]

[tex] = \frac{r}{\frac{reB}{m_D}} [/tex]

Which I have rearranged to get:

[tex]\frac{m_D}{eB} [/tex]

Sincve this is for one whol revolution, I multiplied it by a half to get:

[tex]\frac{m_D}{2eB} [/tex]

Which Mastering Physics says is wrong, but also says:

*Your answer is off by a multiplicative factor.*

Any Ideas?

TFM