Majorana Fermions: Lagrangean and equations of motion

Click For Summary
The discussion focuses on deriving the equations of motion for Majorana fermions from a specified Lagrangian. The equations $$i \gamma^{\mu} \partial_{\mu} \psi = m \psi_c$$ and $$i \gamma^{\mu} \partial_{\mu} \psi_c = m \psi$$ are shown to emerge from the Lagrangian $$L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right )$$, where C denotes charge conjugation. The partial derivatives of the Lagrangian with respect to the fields and their conjugates are computed, leading to equations that must be satisfied. The user expresses uncertainty about the next steps in the evaluation process, seeking guidance on how to proceed further.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
Show that the equations (below) can be obtained from the followong lagrangian
Relevant Equations
.
$$i \gamma^{\mu} \partial_{\mu} \psi = m \psi_c \\
i \gamma^{\mu} \partial_{\mu} \psi_c = m \psi
$$

Where ##\psi_c = C \gamma^0 \psi^*##

Show that the above equations can be obtained from the followong lagrangian

$$
L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right )
$$

Where ##C## is charge conjugation

$$
\begin{align*}
L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right ) = \overline{\psi}_a i \gamma^{\mu} \partial_{\mu} \psi^a - \frac{1}{2} m \left ( \psi^a C_{ab} \psi^b + \overline{\psi}^a C_{ab} \overline{\psi}^b \right )
\end{align*}
$$

\begin{align*}
\frac{\partial L}{\partial \psi^r} = -\frac{1}{2} m \left ( C_{ra} \psi^a + \psi^a C_{ar} \right ) = - \frac{1}{2} m \left ( C_{ra} \psi^a - \psi^a C_{ra} \right )
\end{align*}

\begin{align*}
\frac{\partial L}{\partial \overline{\psi}^r} = i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a + \overline{\psi}^a C_{ar} \right ) = i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a - \overline{\psi}^a C_{ra} \right )
\end{align*}

\begin{align*}
\frac{\partial}{\partial x^{\mu}} \frac{\partial L}{\partial \partial_{\mu} \psi^r} = \frac{\partial}{\partial x^{\mu}} \left ( \overline{\psi_r} i \gamma^{\mu}\right) = \partial_{\mu} \overline{\psi}_r i \gamma^{\mu}
\end{align*}

\begin{align*}
\frac{\partial}{\partial x^{\mu}} \frac{\partial L}{\partial \partial_{\mu} \overline{\psi}^r} = 0
\end{align*}

\begin{align*}
-\frac{1}{2} m \left ( C_{ra} \psi^a - \psi^a C_{ra} \right ) - i \partial_{\mu} \overline{\psi_r} \gamma^{\mu} = 0 \\
i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a - \overline{\psi}^a C_{ra} \right ) = 0
\end{align*}

But i am not sure how to proceed!
 
Physics news on Phys.org
Can someone give me a tip? I am still trying to evaluate it, but i can't found out what i have to do.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...