Majorana Fermions: Lagrangean and equations of motion

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
Show that the equations (below) can be obtained from the followong lagrangian
Relevant Equations
.
$$i \gamma^{\mu} \partial_{\mu} \psi = m \psi_c \\
i \gamma^{\mu} \partial_{\mu} \psi_c = m \psi
$$

Where ##\psi_c = C \gamma^0 \psi^*##

Show that the above equations can be obtained from the followong lagrangian

$$
L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right )
$$

Where ##C## is charge conjugation

$$
\begin{align*}
L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right ) = \overline{\psi}_a i \gamma^{\mu} \partial_{\mu} \psi^a - \frac{1}{2} m \left ( \psi^a C_{ab} \psi^b + \overline{\psi}^a C_{ab} \overline{\psi}^b \right )
\end{align*}
$$

\begin{align*}
\frac{\partial L}{\partial \psi^r} = -\frac{1}{2} m \left ( C_{ra} \psi^a + \psi^a C_{ar} \right ) = - \frac{1}{2} m \left ( C_{ra} \psi^a - \psi^a C_{ra} \right )
\end{align*}

\begin{align*}
\frac{\partial L}{\partial \overline{\psi}^r} = i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a + \overline{\psi}^a C_{ar} \right ) = i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a - \overline{\psi}^a C_{ra} \right )
\end{align*}

\begin{align*}
\frac{\partial}{\partial x^{\mu}} \frac{\partial L}{\partial \partial_{\mu} \psi^r} = \frac{\partial}{\partial x^{\mu}} \left ( \overline{\psi_r} i \gamma^{\mu}\right) = \partial_{\mu} \overline{\psi}_r i \gamma^{\mu}
\end{align*}

\begin{align*}
\frac{\partial}{\partial x^{\mu}} \frac{\partial L}{\partial \partial_{\mu} \overline{\psi}^r} = 0
\end{align*}

\begin{align*}
-\frac{1}{2} m \left ( C_{ra} \psi^a - \psi^a C_{ra} \right ) - i \partial_{\mu} \overline{\psi_r} \gamma^{\mu} = 0 \\
i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a - \overline{\psi}^a C_{ra} \right ) = 0
\end{align*}

But i am not sure how to proceed!
 
Physics news on Phys.org
Can someone give me a tip? I am still trying to evaluate it, but i can't found out what i have to do.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top