Majorana Fermions: Lagrangean and equations of motion

Click For Summary
SUMMARY

The discussion centers on deriving the equations of motion for Majorana fermions from a specified Lagrangian. The Lagrangian is given as $$L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right )$$, where $$C$$ represents charge conjugation. The equations of motion $$i \gamma^{\mu} \partial_{\mu} \psi = m \psi_c$$ and $$i \gamma^{\mu} \partial_{\mu} \psi_c = m \psi$$ can be derived by applying the Euler-Lagrange equations to this Lagrangian. The user seeks guidance on the next steps to complete this derivation.

PREREQUISITES
  • Understanding of Majorana fermions and their properties
  • Familiarity with Lagrangian mechanics in quantum field theory
  • Knowledge of charge conjugation and its mathematical representation
  • Proficiency in applying the Euler-Lagrange equations
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equations in quantum field theory
  • Explore the properties and implications of Majorana fermions
  • Learn about charge conjugation and its role in particle physics
  • Investigate examples of Lagrangians leading to fermionic equations of motion
USEFUL FOR

The discussion is beneficial for theoretical physicists, graduate students in quantum field theory, and researchers focusing on particle physics, particularly those studying Majorana fermions and their mathematical formulations.

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
Show that the equations (below) can be obtained from the followong lagrangian
Relevant Equations
.
$$i \gamma^{\mu} \partial_{\mu} \psi = m \psi_c \\
i \gamma^{\mu} \partial_{\mu} \psi_c = m \psi
$$

Where ##\psi_c = C \gamma^0 \psi^*##

Show that the above equations can be obtained from the followong lagrangian

$$
L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right )
$$

Where ##C## is charge conjugation

$$
\begin{align*}
L = \overline{\psi} i \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} m \left ( \psi^T C \psi + \overline{\psi} C \overline{\psi}^T \right ) = \overline{\psi}_a i \gamma^{\mu} \partial_{\mu} \psi^a - \frac{1}{2} m \left ( \psi^a C_{ab} \psi^b + \overline{\psi}^a C_{ab} \overline{\psi}^b \right )
\end{align*}
$$

\begin{align*}
\frac{\partial L}{\partial \psi^r} = -\frac{1}{2} m \left ( C_{ra} \psi^a + \psi^a C_{ar} \right ) = - \frac{1}{2} m \left ( C_{ra} \psi^a - \psi^a C_{ra} \right )
\end{align*}

\begin{align*}
\frac{\partial L}{\partial \overline{\psi}^r} = i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a + \overline{\psi}^a C_{ar} \right ) = i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a - \overline{\psi}^a C_{ra} \right )
\end{align*}

\begin{align*}
\frac{\partial}{\partial x^{\mu}} \frac{\partial L}{\partial \partial_{\mu} \psi^r} = \frac{\partial}{\partial x^{\mu}} \left ( \overline{\psi_r} i \gamma^{\mu}\right) = \partial_{\mu} \overline{\psi}_r i \gamma^{\mu}
\end{align*}

\begin{align*}
\frac{\partial}{\partial x^{\mu}} \frac{\partial L}{\partial \partial_{\mu} \overline{\psi}^r} = 0
\end{align*}

\begin{align*}
-\frac{1}{2} m \left ( C_{ra} \psi^a - \psi^a C_{ra} \right ) - i \partial_{\mu} \overline{\psi_r} \gamma^{\mu} = 0 \\
i \gamma^{\mu} \partial_{\mu} \psi_r -\frac{1}{2} m \left ( C_{ra} \overline{\psi}^a - \overline{\psi}^a C_{ra} \right ) = 0
\end{align*}

But i am not sure how to proceed!
 
Physics news on Phys.org
Can someone give me a tip? I am still trying to evaluate it, but i can't found out what i have to do.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
Replies
95
Views
8K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K