High School Making a definite integral equal and indefinite integral?

Click For Summary
The discussion revolves around the relationship between definite and indefinite integrals, particularly using graphing calculators like Desmos. A user notes that while their calculator can sketch indefinite integrals assuming the constant c = 0, Desmos defaults to definite integrals. They explore whether it's possible to choose limits a and b such that the definite integral equals the indefinite integral without a shift. The conclusion suggests that setting a to an x-intercept of the indefinite integral allows for a matching sketch of both integrals. This approach effectively aligns the two integral representations.
Saracen Rue
Messages
150
Reaction score
10
I have a calculator which allows me to sketch indefinite integrals - it assumes c = 0. However, when I try to use Desmos Online Graphing Calculator, it won't let me do this with it's integral function. It keeps trying to make me use definite integrals.

I know that ∫(a,b,f(x)dx = F(a) - F(b), so I was wondering if it's possible to define a and b so that the resulting definite integral equals the indefinite integral (where c = 0)
 
Physics news on Phys.org
How does it sketch the definite integrals? If it sketches the curve of ##F(x)## vs ##x## where ##F(x)## is defined as:
$$F(x)=\int_a^x f(t)dt$$
then the sketch will be exactly the same as that of an indefinite integral ##G=\int f(x)dx## with zero integration constant, except shifted downwards by ##G(a)##.
 
  • Like
Likes Saracen Rue
andrewkirk said:
How does it sketch the definite integrals? If it sketches the curve of ##F(x)## vs ##x## where ##F(x)## is defined as:
$$F(x)=\int_a^x f(t)dt$$
then the sketch will be exactly the same as that of an indefinite integral ##G=\int f(x)dx## with zero integration constant, except shifted downwards by ##G(a)##.
So if I make a equal to a x-intercept of the indefinite integral of f(x), then
$$F(x)=\int_a^x f(t)dt$$
With no shift?
 
Yes, that should work.
 
  • Like
Likes Saracen Rue
andrewkirk said:
Yes, that should work.
Thank you! :)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K