Bandersnatch said:
There was a good discussion of the paper on PF last year, when it was still in preprint on ArXiV:
https://www.physicsforums.com/threa...-cosmic-acceleration-from-type-ia-sne.817386/
See especially
@Chalnoth 's posts - he was very critical of the methods and conclusions presented in the article.
I don't know how much it's been improved in subsequent revisions.
Seems to me that my criticisms from that thread stand.
The thing is, professional cosmologists generally don't use a single type of data when determining which model better fits the data. Pretty much every talk that I've ever gone to that describes the evidence for dark energy makes use of a plot similar to this one:
http://supernova.lbl.gov/union/figures/Union2.1_Om-Ol_slide.pdf
(from
here)
This plot is a bit of an old one, and there is even more data available now. What this is showing are the error contours from three different types of data, with the matter density fraction on the horizontal axis and the cosmological constant density fraction on the vertical axis. Note that each individual piece of data doesn't actually constrain dark energy all that well: the tight constraints come from combining them all together. The three data types are the CMB, BAO, and supernovae. The CMB's primary constraint relevant to this particular plot is on the spatial geometry: it says that the universe is very nearly flat. The Baryon Acoustic Oscillation (BAO) data, by contrast, mostly just constrains the matter density fraction. The supernova data constrain the ratio of matter density to dark energy density, but provides almost zero constraint on the curvature.
Taken together, these three data sets converge on the same location in the plot. That's the key point, and is why we can be pretty sure that dark energy actually exists. There are potentially two ways out of this at the current time:
1. There's a large, unaccounted-for systematic error that makes it so that these different data sets all converge tightly to the same location in parameter space, but converge to the wrong location. Some have suggested that the fact that most of these calculations usually assume the universe is homogeneous and isotropic, when it definitely is neither, might have something to do with this. But these alternative explanations have so far all failed in the face of more data.
2. There's some other model of gravity that explains why it
looks like there's a cosmological constant when there actually isn't one. I don't think there's any coherent alternative to General Relativity that has been proposed that actually works here.
These two options only really still exist because there remains the possibility that there's something we haven't thought of.
This paper, by contrast, just says that, "Hey, when we throw out most of the data, the case for an accelerated expansion becomes rather weak!" Well, of course it does.