MHB Mass of a Torus in Spherical Coordinates

pamsandhu
Messages
2
Reaction score
0
consider a torus whose equation in terms of spherical coordinates(r,\theta,\phi) is r=2sin\phi for 0\le\phi\le2\Pi. determine the mass of the region bounded by the torus if the density is given by \rho=\phi.
 
Physics news on Phys.org
pamsandhu said:
consider a torus whose equation in terms of spherical coordinates(r,\theta,\phi) is r=2sin\phi for 0\le\phi\le2\Pi. determine the mass of the region bounded by the torus if the density is given by \rho=\phi.
Since you chose not to show any attempt to do this yourself, it is difficult to know what advice would help. Do you, at least, know that the volume of a torus given by r= f(\theta, \phi) is \int_{\theta= 0}^{2\pi}\int_{\phi= 0}^{2\pi}\int_0^{f(\theta, \phi)} r^2 sin(\theta)drd\theta d\phi and so the mass of such an object with density given by \rho(r,\theta, \phi) is \int_{\theta= 0}^{2\pi}\int_{\phi= 0}^{2\pi}\int_0^{f(\theta, \phi)}\rho(r,\theta,\phi) r^2 sin(\theta)drd\theta d\phi?
 
Last edited by a moderator:
Back
Top