- #1

- 2

- 0

**A mass weighing 32 pounds stretches a spring 6 inches. The spring constant is equal to 64 lb/ft.The mass moves through a medium offering a damping force that is numerically equal to [tex]\beta[/tex] times the instantaneous velocity. Determine the values of [tex]\beta[/tex]>0 for which the spring/mass system will exhibit oscillatory motion.**

2*[tex]\lambda[/tex]=[tex]\frac{\beta}{m}[/tex]

[tex]\omega[/tex][tex]^{2}[/tex]=[tex]\frac{k}{m}[/tex]

[tex]\lambda[/tex][tex]^{2}[/tex] - [tex]\omega[/tex][tex]^{2}[/tex]>0 is overdamped

[tex]\lambda[/tex][tex]^{2}[/tex] - [tex]\omega[/tex][tex]^{2}[/tex]=0 is critically damped

[tex]\lambda[/tex][tex]^{2}[/tex] - [tex]\omega[/tex][tex]^{2}[/tex]<0 is underdamped

1 slug = 32 pounds

I've solved that [tex]\beta[/tex] is equal/less than/greater than 2*[tex]\sqrt{k*m}[/tex]=32, but I don't understand when it will or will not have oscillatory motion.