Mastering Trigonometry: Understanding Sine, Cosine, and Tan Graphs

Click For Summary
Understanding sine, cosine, and tangent graphs is crucial for solving trigonometric problems without a calculator. For example, knowing that sin(30°) = 1/2 helps determine that sin(150°) and sin(330°) also yield values based on the unit circle's symmetry. To find two solutions for sin(2x) = sin(30°), recognizing that x can be 15° and 75° simplifies the process significantly. Familiarity with the unit circle and key triangles, like the 30-60-90 and 45-45-90 triangles, enhances comprehension of these relationships. Mastering these concepts will make solving trigonometric equations much easier.
david18
Messages
49
Reaction score
0
I'm having a lot of problems with this topic. I know what the sine, cosine and tan graphs look like.

one question i come across fequently is "given that sin 30°, what is a) sin 150° b) sin 330°. - i can work it out on a calculator but the questions on a non-calc paper. I am presuming it's something about the graph having repetitions above and below the x axis.

another question tat frequently pops up is something like "find two different values of x between 0 and 180 for which sin (2x)° = sin 30°". I can work out one of them as 15° but cannot find the second solution and would like to know how it can be found.
 
Physics news on Phys.org
You know how to define cos and sin as the x and y coordinates of points on the unit circle, right? Then it should be easy. Just draw the unit circle and lines through the origin that make 30°, 150° and 330° angles with the x axis. If you know that sin is the y coordinate of the point where the line intersects the unit circle, the answer will be almost obvious once you've drawn the picture.

You solved the first part of the second problem by realizing that two 15° rotations are equal to a 30° rotation. To solve the second part, the first thing you have to do is to find a second point on the unit circle with the y coordinate equal sin 30°. What's the angle between the x-axis and a line from the origin to that point? The answer you seek is half of that.
 
Either brush up on the unit circle or do a bunch of memorizing:
http://img404.imageshack.us/img404/6708/trigbi7.png
 
Last edited by a moderator:
If you can draw sin(x) and cos(x) with reasonable accuracy over 1 period, then the answers are obvious from looking at the symmetry of the functions.

Try and draw sin such that it crosses the x-axis at 0,180 and 360 and it has a maximum at 90, minimum at 270 (half-way between 180 and 360).

Draw cos such that it crosses the x-axis at 90 and 270 and has a maximum at 0,360 and a minimum at 180.

I find that to be much easier than memorizing the above formulae.

Fredrik's method might be easier for you. Whatever works best, but it does require some practice.
 
david18 said:
I'm having a lot of problems with this topic. I know what the sine, cosine and tan graphs look like.

one question i come across fequently is "given that sin 30°, what is a) sin 150° b) sin 330°. - i can work it out on a calculator but the questions on a non-calc paper. I am presuming it's something about the graph having repetitions above and below the x axis.

another question tat frequently pops up is something like "find two different values of x between 0 and 180 for which sin (2x)° = sin 30°". I can work out one of them as 15° but cannot find the second solution and would like to know how it can be found.

You should familiarize yourself with the unit circle: http://www.humboldt.edu/~dlj1/PreCalculus/Images/UnitCircle.html

Once you do you'll start to realize things like:
sin(30) = 1/2
sin(150) = 1/2
sin(330) = -1/2

To find sin(2x) = sin(30) over the interval (0,180] becomes simple from above:
sin(2x) = 1/2 and x = 15 and 75 (half of 30 and 150)
 
Last edited by a moderator:
Man, these guys are nuts.

All you need to do is to be able to trigonometry with the 30-60-90 and the 45-45-90 triangle. Everything else follows from the unit circle.
 
ZioX said:
Man, these guys are nuts.

All you need to do is to be able to trigonometry with the 30-60-90 and the 45-45-90 triangle. Everything else follows from the unit circle.

What's the difference? If you know trig with those two triangles you've memorized like 80% of the basic unit circle anyways :-p
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
3K
Replies
12
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K