Math Textbooks: Too Much and Too Little Info

  • Thread starter Thread starter Fletcher
  • Start date Start date
  • Tags Tags
    Religion
Fletcher
Messages
25
Reaction score
0
I accept theorems on faith, without proof.

Sorry, just found the analogy funny. My point is: I really do not like math textbooks (I refer to the calculus/DE level textbooks I have, and my memory from high school of finding math textbooks nearly unreadable). They seem to employ the least effective method of imparting knowledge by simultaneously giving too much and too little information. Here's what I mean. Typically you'll see something like this:

Up until now we have only dealt with ... But what about the case that... Recall from last section [equation]. [long semi-proof-ish derivation with intermittent brief lines of text that ultimately isn't easily digested] Hence we have [some theorem] [theorem is highlighted in a special block] [examples] [problems]

I find when I read a math textbook I cannot follow it without taking a step back and figuring out what the purpose of various segments of text are. I often think I would find textbooks easier to follow if it were just a series of theorems and proofs separated by headings. In any case a completely mathless, "plain english" explanation of what's going on should always be present. It is a math textbook yes, but isn't the purpose to teach?
 
Last edited:
Mathematics news on Phys.org
Up until now we have only dealt with ... But what about the case that... Recall from last section [equation]. [long semi-proof-ish derivation with intermittent brief lines of text that ultimately isn't easily digested] Hence we have [some theorem] [theorem is highlighted in a special block] [examples] [problems]
Sounds like a James Stewart text :biggrin:
I find when I read a math textbook I cannot follow it without taking a step back and figuring out what the purpose of various segments of text are. I often think I would find textbooks easier to follow if it were just a series of theorems and proofs separated by headings. In any case a completely mathless, "plain english" explanation of what's going on should always be present. It is a math textbook yes, but isn't the purpose to teach?
There are certain things that cannot be explained without "mathless" language. I do understand what your point is though. It is for such reasons I've taken a liking to authors such as Bob Miller, W. Michael Kelley, and the DE book by William E. Boyce and Richard C. DiPrima is nothing short of magnificent. If you plan on getting a DE book, this is the one. There is this other DE book, Differential Equations and Boundary Value Problems, by C. Edwards and D. Penney; this is the worst DE book ever! The authors write like a bunch of newbs with no organization whatsoever and the language is nothing special.
 
Last edited:
Fletcher said:
I accept theorems on faith, without proof.

Sorry, just found the analogy funny. My point is: I really do not like math textbooks (I refer to the calculus/DE level textbooks I have, and my memory from high school of finding math textbooks nearly unreadable). They seem to employ the least effective method of imparting knowledge by simultaneously giving too much and too little information. Here's what I mean. Typically you'll see something like this:

Up until now we have only dealt with ... But what about the case that... Recall from last section [equation]. [long semi-proof-ish derivation with intermittent brief lines of text that ultimately isn't easily digested] Hence we have [some theorem] [theorem is highlighted in a special block] [examples] [problems]

I find when I read a math textbook I cannot follow it without taking a step back and figuring out what the purpose of various segments of text are. I often think I would find textbooks easier to follow if it were just a series of theorems and proofs separated by headings. In any case a completely mathless, "plain english" explanation of what's going on should always be present. It is a math textbook yes, but isn't the purpose to teach?

Check out Strang's Applied math,
https://www.amazon.com/dp/0961408804/?tag=pfamazon01-20
 
Last edited by a moderator:
FrogPad said:

Gilbert Strang... That is the professor from MIT; I enjoyed his Calculus book. Though, I only read a few sections of it.

http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm
 
Last edited by a moderator:
this is why you should pay attention to advice given in maths forums about books.
and take books written by people such as courant,rudin,spivak,apostol, etc.
btw, iv'e looked at the books of goursat, how would you folks rate goursat three volumes on calcs compared with the above authors?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top