Math with experimental uncertainties

Identity
Messages
151
Reaction score
0
Why is it that if you have two data points a \pm b and c \pm d whose uncertainties are symmetrically distributed, the sum of the points is

a+c \pm \sqrt{b^2+d^2}

Can someone please help me with this derivation.



Also, another separate question, suppose I have many uncertain data points: x_1 \pm y_1, x_2 \pm y_2+.... And I have a function that acts on all of them: f(x_1 \pm y_1, x_2 \pm y_2,...,x_n \pm y_n)

Is the following reasoning valid:

Choose x_i \pm y_i in order to maximize f.

(For instance, if I had f(\frac{1}{x \pm y}) you would choose x -y to maximize f.)

Next, you choose x_i \pm y_i in order to minimize f.

Once you have f_{max} and f_{min}, you find the average of the two, so you have:

f(x_1 \pm y_1, x_2 \pm y_2,..., x_n \pm y_n) = \frac{f_{max}+f_{min}}{2} \pm \frac{f_{max}-f_{min}}{2}

(SORRY FOR NO LATEX, THE LATEX CODE IS GIVING A COMPLETELY DIFFERENT EQUATION!)


Thanks!
 
Last edited:
Mathematics news on Phys.org
It is a property of standard deviations of distributions that when they are convoluted, the standard deviation of the result is the square root of the sum of the squares of the standard deviations.

In other words: consider a random variable B giving your first error (with standard deviation b), and consider another random variable D giving your second error (with standard deviation d).

If we assume that B and D are statistically independent, we can consider the distribution of the random variable F = B + D, and we know then that the probability distribution of F will be the convolution of the one of B and the one of D (if they ARE statistically dependent, this is not true anymore).

F is the error on the sum of course. So the probability distribution of the error of the sum (namely of F) is the convolution of the distributions of B and of D. It is a property of the convolution that the standard deviation of the distribution of F, say, f, is given by sqrt(b^2 + d^2).

Hence, f = sqrt(b^2 + d^2).

As to your second question, what you do is a kind of heuristic guessing, which might give an answer that is not too far from the right answer, but it is not a correct technique (although, as I said, heuristically maybe useful, say in a computer program that has to give you some rough estimate of the error).

The correct way to to, at least if the errors are small so that the function f can be linearized over the range of the errors, is to calculate sqrt( (df/dx1 * y1)^2 + (df/dx2 * y2)^2 +... (df/dxn * yn)^2 )

The explanation is close to that of the first question: you construct a new random variable (the error on the outcome), which will in this case be a weighted sum of the random variables representing the errors y1, y2, ...yn.
This is obtained by linearizing f around f(x1,x2,...xn).
 
Last edited:
Thanks vanesch :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
6
Views
4K
Replies
2
Views
13K
Replies
20
Views
2K
Replies
5
Views
2K
Replies
1
Views
566
Replies
5
Views
2K
Back
Top