(adsbygoogle = window.adsbygoogle || []).push({}); mathematica not supporting graphs,,,code is as

Dear Fellow I was trying to make graph using mathematica but because of imaginary appearing mathematica is not supporting don't now how to evaluate the graph,,where code for mathematica is as

rho = 1.74*10^(3);

lambda = 9.4*10^(11);

mue = 4.0*10^(11);

T0 = 293;

k = 0.6*10^(-2);

K = 1*10^(11);

K1 = 0.3*10^(-3);

CE = 383.1;

gamma = 0.779*10^(-8);

gamma1 = 0.1*10^(-5);

gamma11 = 0.5*10^(-3);

j = 0.2*10^(-21);

alpha0 = 0.779*10^(-4);

lambda0 = 0.5*10^(11);

lambda1 = 0.2*10^(11);

umega = 2;

t = 0.1;

aphat = 1.78*10^(-5);

f = 0.5;

p = 10;

b = 2;

w0 = -2;

xi = 1;

z = 0.1;

w = w0 + xi;

c2 = mue/rho;

c3 = (2*alpha0)/(3*rho*j);

c4 = (2*lambda1)/(9*rho*j);

c5 = (2*lambda0)/(9*rho*j);

c6 = (2*gamma11)/(9*rho*j);

w1 = (rho*CE*c2)/K1;

epsilon1 = ((gamma1^2)*T0)/(rho^2*CE*c2);

epsilon2 = K1/(rho*CE*c2);

epsilon3 = (K*w1)/(rho*CE*c2);

epsilon4 = (gamma1*gamma11*T0)/(rho^2*CE*w1*c2);

epsilon = epsilon2 + epsilon3*w;

c1 = (lambda + 2*mue + k)/rho;

a0 = (c2)/(c1);

a1 = lambda0/(lambda + 2*mue + k);

a2 = (rho*c2)/(mue + k);

a3 = k/(mue + k);

a4 = (k*c2)/(gamma*w1^2);

a5 = (rho*j*c2)/gamma;

a6 = (c3)/(c2);

a7 = (c4)/(w1^2);

a8 = (c5)/(w1^2);

a9 = (2*gamma11*c2)/(9*gamma1*j*w1^2);

A1 = b^2 + a0*(w^2 - umega^2);

A2 = 2*umega*a0*w;

A3 = b^2 + a2*(w^2 - umega^2);

A4 = 2*umega*a2*w;

A5 = b^2 + 2*a4 + a5*w^2;

A6 = b^2*a6 + a7 + w^2;

g1 = epsilon4*w - a1*epsilon1*w^2;

g2 = -epsilon4*w*A1 + a1*epsilon1*w^2*b^2;

g3 = a1*epsilon*b^2 + a1*w^2 + a0*epsilon4*w;

g4 = A2*epsilon4*w;

g5 = A3 + A5 - a3*a4;

g6 = A3*A5 - a3*a4*b^2;

g7 = g2 - g1*g5;

g8 = -g2*g5 + g1*g6 + g4*A4;

g9 = g2*g6 - g4*A4*A5;

g10 = -g3 - a1*epsilon*g5;

g11 = g3*g5 + a1*epsilon*g6;

g12 = g3*g6;

g13 = a6*(epsilon*b^2 + w^2) + A6*epsilon;

g14 = epsilon4*a9*w + A6*(epsilon*b^2 + w^2);

g15 = epsilon1*a6*w^2*b^2 + A6*epsilon1*w^2 - a8*epsilon4*w;

g16 = epsilon4*a8*w*b^2 - epsilon1*w^2*A6*b^2;

g17 = epsilon*(a6*g1 + a1*epsilon1*w^2*a6);

g18 = -a6*(epsilon*g7 + epsilon1*w^2*g10) + g13*g1 + a1*epsilon*g15;

g19 = a6*(epsilon*g8 + epsilon1*w^2*g11) - g13*g7 + g14*g1 -

a1*epsilon*g16 - g10*g15;

g20 = -a6*epsilon*g9 + g13*g8 - g14*g7 + g10*g16 + g11*g15 +

g12*a6*epsilon1*w^2;

g21 = -g13*g9 + g14*g8 - g11*g16 + g12*g15;

g22 = -g14*g9 - g12*g16;

a10 = lambda_ 0/(rho*c2);

a11 = c1/c2;

a12 = lambda/(rho*c2);

a13 = (mue + k)/(rho*c2);

a14 = (k)/(rho*c2);

a15 = (gamma*w1^2)/(rho*c2^4);

a16 = (alpha_ 0*w1)/(rho*c2^(3/2));

k1 = +0.0024

k2 = +0.0018 - 0.0015*I

k3 = 0.0018 + 0.0015*I

k4 = 0.0003 + 0.0019*I

k5 = 0.0003 - 0.0019*I

H21 = (A4*(k1^2 - A5))/(k1^4 - k1^2*g5 + g6);

H22 = (A4*(k2^2 - A5))/(k2^4 - k2^2*g5 + g6);

H23 = (A4*(k3^2 - A5))/(k3^4 - k3^2*g5 + g6);

H24 = (A4*(k4^2 - A5))/(k4^4 - k4^2*g5 + g6);

H25 = (A4*(k5^2 - A5))/(k5^4 - k5^2*g5 + g6);

H11 = (k1^4*a6*epsilon1*w^2 - k1^2*g15 - g16)/(k1^4*a6*epsilon -

k1^2*g13 + g14);

H12 = (k2^4*a6*epsilon1*w^2 - k2^2*g15 - g16)/(k2^4*a6*epsilon -

k2^2*g13 + g14);

H13 = (k3^4*a6*epsilon1*w^2 - k3^2*g15 - g16)/(k3^4*a6*epsilon -

k3^2*g13 + g14);

H14 = (k4^4*a6*epsilon1*w^2 - k4^2*g15 - g16)/(k4^4*a6*epsilon -

k4^2*g13 + g14);

H15 = (k5^4*a6*epsilon1*w^2 - k5^2*g15 - g16)/(k5^4*a6*epsilon -

k5^2*g13 + g14);

H31 = -((a4*A4*(k1^2 - b^2))/(k1^4 - k1^2*g5 + g6));

H32 = -((a4*A4*(k2^2 - b^2))/(k2^4 - k2^2*g5 + g6));

H33 = -((a4*A4*(k3^2 - b^2))/(k3^4 - k3^2*g5 + g6));

H34 = -((a4*A4*(k4^2 - b^2))/(k4^4 - k4^2*g5 + g6));

H35 = -((a4*A4*(k5^2 - b^2))/(k5^4 - k5^2*g5 + g6));

H41 = (a8*(k1^6 - b^2) - a9*H11)/(a6*k1^2 - A6);

H42 = (a8*(k2^6 - b^2) - a9*H12)/(a6*k2^2 - A6);

H43 = (a8*(k3^6 - b^2) - a9*H13)/(a6*k3^2 - A6);

H44 = (a8*(k4^6 - b^2) - a9*H14)/(a6*k4^2 - A6);

H45 = (a8*(k5^6 - b^2) - a9*H15)/(a6*k5^2 - A6);

H61 = a10*H41 - k1*a11*(-k1 + I*b*H21) + I*b*a12*(I*b + k1*H21) - H11;

H62 = a10*H42 - k2*a11*(-k2 + I*b*H22) + I*b*a12*(I*b + k2*H22) - H12;

H63 = a10*H43 - k3*a11*(-k3 + I*b*H23) + I*b*a12*(I*b + k3*H23) - H13;

H64 = a10*H44 - k4*a11*(-k4 + I*b*H24) + I*b*a12*(I*b + k4*H24) - H14;

H65 = a10*H45 - k5*a11*(-k5 + I*b*H25) + I*b*a12*(I*b + k5*H25) - H15;

H71 = I*b*(I*b*H21 - k1) - k1*a13*(I*b + H21*k1) + a14*H31;

H72 = I*b*(I*b*H22 - k2) - k2*a13*(I*b + H22*k2) + a14*H32;

H73 = I*b*(I*b*H23 - k3) - k3*a13*(I*b + H21*k3) + a14*H33;

H74 = I*b*(I*b*H24 - k4) - k4*a13*(I*b + H24*k4) + a14*H34;

H75 = I*b*(I*b*H25 - k5) - k5*a13*(I*b + H25*k5) + a14*H35;

M1 = 8.9842 10^045 + 6.2942 10^(046) I

M2 = 6.9622 10^046 - 5.3668 10^(046) I

M3 = 2.1724 10^046 + 3.7184 10^(046) I

M4 = -9.1931*10^046 + 7.5101 10^(046) I

M5 = -8.3987*10^045 - 1.2156 10^(047) I

U1 = (-k1 + I*b*H21)*M1*e^(-k1*x) + (-k2 + I*b*H22)*M2*

e^(-k2*x) + (-k3 + I*b*H23)*M3*e^(-k3*x) + (-k4 + I*b*H24)*M4*

e^(-k4*x) + (-k5 + I*b*H25)*M5*e^(-k5*x);

U = U1*e^(w*t + I*b*z);

Plot[Re, {x, 0, 5}],

any support in which I can find graph will be appreciated

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mathematica not supporting graphs code is as

Loading...

Similar Threads for Mathematica supporting graphs |
---|

Mathematica Storing Mathematica output |

Mathematica Mathematica to MATLAB |

Mathematica Cannot do the integral of the Hyper-geometric function? |

Mathematica Cannot Plot This Function in Mathematica |

Mathematica While Loop in Mathematica |

**Physics Forums | Science Articles, Homework Help, Discussion**