Hi all,(adsbygoogle = window.adsbygoogle || []).push({});

If I have these two statements given to me, and I have to determine whether they are true or not.

a) [tex] \forall x \epsilon R [/tex] [tex]\exists y \epsilon R [/tex] [tex](y^2 = x^2 + 1)[/tex]

b) [tex]\exists y \epsilon R [/tex] [tex]\forall x \epsilon R [/tex] [tex](y^2 = x^2 + 1) [/tex]

Now, to me, they both mean exactly the same thing, and both can be shown to be false by setting x = 2, then y is not a real number.

However, seeing that the question specifically asks to prove just those two statements, I'm wondering if perhaps I am interpreting them wrong and they actually mean two different things.

Thanks in advance for any advice,

Robbie

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mathematical Proofs

Loading...

Similar Threads for Mathematical Proofs | Date |
---|---|

Mathematical proof of the Big Bang Theory | Jul 24, 2008 |

Mathematical proof | Jun 29, 2008 |

Proof Question: Using Mathematical Induction | Mar 24, 2008 |

Proof Question: Mathematical Induction | Mar 22, 2008 |

Proof by mathematical induction | Feb 17, 2008 |

**Physics Forums - The Fusion of Science and Community**