[tex]S=(adsbygoogle = window.adsbygoogle || []).push({});

\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}

[/tex]

for simple cubic

[tex]I=

\begin{bmatrix} -\frac{a}{2} & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & -\frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & -\frac{a}{2} \end{bmatrix}

[/tex]

for volume centered cubic

[tex]F=

\begin{bmatrix} 0 & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & 0 & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & 0 \end{bmatrix}

[/tex]

for face centered cubic

I don't see any logic for this matrices? How can I get this? I can axcept that simple is P because minimum distance between neighbors is [tex]a[/tex]. But But what with the other two matrices?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Matrices of simple face and cubic centered cubic lattice

**Physics Forums | Science Articles, Homework Help, Discussion**