[tex]S=(adsbygoogle = window.adsbygoogle || []).push({});

\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}

[/tex]

for simple cubic

[tex]I=

\begin{bmatrix} -\frac{a}{2} & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & -\frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & -\frac{a}{2} \end{bmatrix}

[/tex]

for volume centered cubic

[tex]F=

\begin{bmatrix} 0 & \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & 0 & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} & 0 \end{bmatrix}

[/tex]

for face centered cubic

I don't see any logic for this matrices? How can I get this? I can axcept that simple is P because minimum distance between neighbors is [tex]a[/tex]. But But what with the other two matrices?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Matrices of simple face and cubic centered cubic lattice

Loading...

Similar Threads - Matrices simple face | Date |
---|---|

A Can't crystal of simple lattice be antiferromagnetic? | Apr 11, 2016 |

Simple (?) question regarding the Fermi Surface | Mar 8, 2015 |

Parity rule for wigner D-matrices | Oct 15, 2011 |

Designating matrices by (system2 operator system1) | Jun 20, 2011 |

Gamma matrices out of pauli matrices - symmetry/group theory | Oct 1, 2010 |

**Physics Forums - The Fusion of Science and Community**