In case of simple cubic lattice relative magnetization is given by(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\sigma=1-\frac{1}{S}\frac{v}{(2\pi)^3}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\mbox{d} k_x\mbox{d} k_y\mbox{d}k_z(\mbox{e}^{\frac{E(\vec{k})}{kT}}-1)^{-1}[/tex]

where ##v## is volume of elementary cell, ##a## is parameter of elementary cell, and integration from ##-\frac{\pi}{a}## to ##\frac{\pi}{a}## is integration over first Brillouin zone.

How relation for relative magnetization looks in case of face cubic centered lattice. What is ##v## and what are integral boundaries in that case? Thanks a lot for the answer.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Relative magnetization and a Face Centered Cubic lattice

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**