- #1

- 698

- 18

In case of simple cubic lattice relative magnetization is given by

[tex]\sigma=1-\frac{1}{S}\frac{v}{(2\pi)^3}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\mbox{d} k_x\mbox{d} k_y\mbox{d}k_z(\mbox{e}^{\frac{E(\vec{k})}{kT}}-1)^{-1}[/tex]

where ##v## is volume of elementary cell, ##a## is parameter of elementary cell, and integration from ##-\frac{\pi}{a}## to ##\frac{\pi}{a}## is integration over first Brillouin zone.

How relation for relative magnetization looks in case of face cubic centered lattice. What is ##v## and what are integral boundaries in that case? Thanks a lot for the answer.

[tex]\sigma=1-\frac{1}{S}\frac{v}{(2\pi)^3}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\int^{\frac{\pi}{a}}_{-\frac{\pi}{a}}\mbox{d} k_x\mbox{d} k_y\mbox{d}k_z(\mbox{e}^{\frac{E(\vec{k})}{kT}}-1)^{-1}[/tex]

where ##v## is volume of elementary cell, ##a## is parameter of elementary cell, and integration from ##-\frac{\pi}{a}## to ##\frac{\pi}{a}## is integration over first Brillouin zone.

How relation for relative magnetization looks in case of face cubic centered lattice. What is ##v## and what are integral boundaries in that case? Thanks a lot for the answer.

Last edited: