MHB Matrices Show that Tr(A + B) = Tr(A) + Tr(B).

  • Thread starter Thread starter MaXiiMo
  • Start date Start date
  • Tags Tags
    Matrices
AI Thread Summary
The discussion revolves around proving properties of the trace of matrices, specifically that Tr(A + B) = Tr(A) + Tr(B) and Tr(AB) = Tr(BA). Participants emphasize using the definition of trace in sigma notation to demonstrate these properties. The problem also includes a third part related to a 2x2 matrix, asserting that A^2 - Tr(A)A + det(A)*I2 = O. The original poster expresses a lack of confidence in solving these problems and requests detailed solutions. The conversation highlights the importance of understanding matrix operations and their implications on the trace function.
MaXiiMo
Messages
4
Reaction score
0
I do not have any work to show as I am not skilled enough to solve this problem as of yet. I really do need an answer to the question though. I know this is a long shot but I am desperate at the moment, so please do provide the solution with steps to the problem below. Many thanks.

Problem) The trace of an n x n matrix A is:

Tr(a) = a11 + a22 + ... + ann.(a) Show that Tr(A + B) = Tr(A) + Tr(B).

(b) Show that Tr(AB) = Tr(BA).

(c) Show: For a 2 x 2 matrix A, we have

A^2 - Tr(A)A + det(A)*I2 = O.

(I believe I2 is representative of "Identity matrix 2")
 
Mathematics news on Phys.org
MQ1993 said:
I do not have any work to show as I am not skilled enough to solve this problem as of yet. I really do need an answer to the question though. I know this is a long shot but I am desperate at the moment, so please do provide the solution with steps to the problem below. Many thanks.

Problem) The trace of an n x n matrix A is:

Tr(a) = a11 + a22 + ... + ann.(a) Show that Tr(A + B) = Tr(A) + Tr(B).

(b) Show that Tr(AB) = Tr(BA).

(c) Show: For a 2 x 2 matrix A, we have

A^2 - Tr(A)A + det(A)*I2 = O.

(I believe I2 is representative of "Identity matrix 2")

a) should be easy...
 
Prove It said:
a) should be easy...

Okay, but can you help me with the rest?
 
Hi MQ1993, :)

Both (a) and (b) can be shown by using the definition of trace in sigma notation. If $ \displaystyle \text{tr}(A)=\sum_{i=1}^{n}a_{ii}$, what is the definition of $\text{tr}(AB)$?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top