Matrix Model for Membranes and D-brane Dynamics

Kevin_Axion
Messages
912
Reaction score
3
I was looking through the HEP-th section of arXiv and I noticed this interesting paper, unfortunately the majority of the paper is in Persian.
Subjects: High Energy Physics - Theory (hep-th): http://arxiv.org/abs/1011.2135
Matrix Model for membrane and dynamics of D-Particles in a curved space-time geometry and presence of form fields
Author: Qasem Exirifard
Abstract: We study dynamics of a membrane and its matrix regularisation. We present the matrix regularisation for a membrane propagating in a curved space-time geometry in the presence of an arbitrary 3-form field. In the matrix regularisation, we then study the dynamics of D-particles. We show how the Riemann curvature of the target space-time geometry, or any other form fields can polarise the D-Particles, cause entanglement among them and create fuzzy solutions. We review the fuzzy sphere and we present fuzzy hyperbolic and ellipsoid solutions.
 
Last edited:
Physics news on Phys.org
That's apparently a master's thesis that was submitted in 2002. I'm sure most of the topics are already covered in Wati Taylor's lectures: http://arxiv.org/abs/hep-th/0002016
 
Yea, I realized that right after I posted it, thanks though.
 
fzero said:
That's apparently a master's thesis that was submitted in 2002. I'm sure most of the topics are already covered in Wati Taylor's lectures: http://arxiv.org/abs/hep-th/0002016

This is almost right, but not completely.Only some parts are covered in the Taylor's lecture. It cites this ref. whenever it uses it. The parts that are not covered include:

1- How Quantum Mechanics removes the spike instability due to uncertainty principle. Though this is simple, it sounds nice ( this is at the end of the first chapter.)

2- In the second chapter it demonstrates matrix regularisation in the presence of an arbitrary form field, and curved space-time geometry. In so doing it gives an insight why it is better to use the symmetric prescription. (Only within the symmetric prescription, within finite $N$ approximation, there exists no \frac{1}{N} correction in the matrix regularisation to membrane dynamics.)

3- In the last chapter, it shows how each field can entangle D-particles. It presents an ellipsoid solution when the curvature of the space-time is turned on. It also presents a family of the static excitations (with positive energy) of D-particles in curved space-time geometry, a non-compact solution which reads
[x,y]=i\theta
[z,y]=i \sqrt{2M} x
[z,x]= i \sqrt{2M} y
wherein $\theta$ is a free parameter labelling the excitation, and $M$ receives contribution from the Riemann curvature and one-form potential. The Casimir invariant of this algebra reads
J=z - \frac{2 M}{2\theta}(y^2-x^2)
Since the Casimir operator defines the `shape' of fuzzy solutions, the above algebra is called the `hyperbolic fuzzy solutions`.

btw, this has been my MS thesis in 2002.
 
Last edited:
Thread 'LQG Legend Writes Paper Claiming GR Explains Dark Matter Phenomena'
A new group of investigators are attempting something similar to Deur's work, which seeks to explain dark matter phenomena with general relativity corrections to Newtonian gravity is systems like galaxies. Deur's most similar publication to this one along these lines was: One thing that makes this new paper notable is that the corresponding author is Giorgio Immirzi, the person after whom the somewhat mysterious Immirzi parameter of Loop Quantum Gravity is named. I will be reviewing the...
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
Back
Top