Matrix Multiplication: Column Swapping Effects

  • Thread starter Thread starter Karate Chop
  • Start date Start date
  • Tags Tags
    Matrices
AI Thread Summary
Swapping columns in one of the matrices during multiplication does affect the result, as it changes the matrix itself. The definition of matrix multiplication shows that the elements of the resulting matrix depend on the specific arrangement of the input matrices. While matrix multiplication is associative, it is not commutative, meaning that the order of multiplication matters. Rearranging columns results in a different matrix, which leads to a different outcome when multiplied. Therefore, it is crucial to maintain the original column arrangement to achieve the intended result.
Karate Chop
Messages
18
Reaction score
0
when you're multiplying two matrices together does it affect the answer at all if you swap the columns around in one of the matrices?
 
Physics news on Phys.org
Karate Chop said:
when you're multiplying two matrices together does it affect the answer at all if you swap the columns around in one of the matrices?

yes it does, just look at the defnition of matrix multiplication :

(AB)_{ij} = \Sigma_k a_{ik}b_{kj}

try for yourself with an example

Here is some extra info : Matrix Multiplication
marlon
 
Did you consider doing a little experimentation?

What is \left( \begin{array}{ccc}1&2\\3&2\end{array}\right)\left(\begin{array}{ccc}2&-1\\2&1\end{array}\right)?

Is that the same as \left( \begin{array}{ccc}1&2\\3&2\end{array}\right)\left(\begin{array}{ccc}-1&2\\1&2\end{array}\right)?
 
Matrix multiplication is associative but not commutative.

E.g. A(BC) equals (AB)C but AB does not equal BA.

The Bob (2004 ©)
 
And that has what to do with the question?
 
HallsofIvy said:
And that has what to do with the question?
:smile: :smile: :smile: :smile: :smile:

answer : i don't know :smile:
marlon
 
E.g. A(BC) equals (AB)C but AB does not equal BA.
Sometimes it does. Such as the square of a matrix.
 
When we say matrix multiplication isn't commutative, we mean in general.
To be commutative it always has to be valid.

As you say though, there are exceptions (multiplying with the identy-matrix or with the inverse too for example) but that doesn't change the fact the multiplication isn't commutative.
 
MY point was that the original question had to do with rearranging the columns in one of the matrices- giving a completely different matrix. It had nothing to do with the commutativity of multiplication.

Wandering off topic is just going to confuse the original poster.
 
  • #10
HallsofIvy said:
And that has what to do with the question?
Apologises for misunderstanding the question. Glad to feel I can make mistakes and not have my gut knotted. :cry:

The Bob (2004 ©)
 
Back
Top