- #1
- 70
- 0
Homework Statement
Find the matrix of the transformation:[tex]T: R^{2} \rightarrow R^{2x2}[/tex]
[tex]
\[
T(a,b) =
\left[ {\begin{array}{cc}
a & 0 \\
0 & b \\
\end{array} } \right]
\][/tex]
Homework Equations
The Attempt at a Solution
I choose the standard bases for [tex]R^{2}[/tex] and [tex]R^{2x2}[/tex] and call them b and b' respectively.
[tex]T(1,0) = 1e_{1} + 0e_{2} + 0e_{3} + 0e_{4}[/tex]
[tex]T(0,1) = 0e_{1} + 0e_{2} + 0e_{3} + 1e_{4}[/tex]
This gives me a matrix of
[tex]
\[
\left[ {\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
\end{array} } \right]
\][/tex]
However, this doesn't work when I multiply by the column vector (a,b). I get a column vector of (a, 0, 0, b) instead of a 2x2 matrix. What's going on?