MHB Max Value of a: Positive Integer Solutions

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If both $a$ and $\sqrt{a^2+204a}$ are positive integers, find the maximum value of $a$.
 
Mathematics news on Phys.org
anemone said:
If both $a$ and $\sqrt{a^2+204a}$ are positive integers, find the maximum value of $a$.

As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.
 
greg1313 said:
As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.

Nice try greg1313, but sorry, your answer isn't correct..:(
 
greg1313 said:
As $\sqrt{a^2+204a}\equiv a\sqrt{1+\dfrac{204}{a}},\quad1+\dfrac{204}{a}$ must also be a perfect square. As $204$ has factors $1,2,3,4,6,12,17,34,51,68,102,204$ and $1+\dfrac{204}{68}=4$ whereas $a=102$ and $a=204$ do not give perfect squares, the maximum value of $a$ is $68$.
Incorrect! Sorry about that! :o
 
let $\sqrt{a^2+204a} = y$
So $y^2 = a^2 + 204a$
or $y^2 = a^2 + 204 a + 102^2 - 102^2 = (a+102)^2- 102^2$
or $(a+102)^2-y^2 = 102^2$
or $(a+102+y)(a+102-y) = 102^2$
now $(a+102+y)$ and $(a+102-y)$ both should be even (as product is even) and for a to be maximum $a+102+y$
should be maximum and $(a+102-y)$ should be minumum so say $(a+102-y) =2$ and we get
$(a+102+y) = 102 * 51$ $(a+102-y) = 2$
adding $2a + 204 = 102 * 51 + 2$ or a = $2500$
 
kaliprasad said:
let $\sqrt{a^2+204a} = y$
So $y^2 = a^2 + 204a$
or $y^2 = a^2 + 204 a + 102^2 - 102^2 = (a+102)^2- 102^2$
or $(a+102)^2-y^2 = 102^2$
or $(a+102+y)(a+102-y) = 102^2$
now $(a+102+y)$ and $(a+102-y)$ both should be even (as product is even) and for a to be maximum $a+102+y$
should be maximum and $(a+102-y)$ should be minumum so say $(a+102-y) =2$ and we get
$(a+102+y) = 102 * 51$ $(a+102-y) = 2$
adding $2a + 204 = 102 * 51 + 2$ or a = $2500$

Bravo, kaliprasad!(Cool)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top