Maximum exhaust velocity for a De Laval nozzle

Click For Summary
SUMMARY

The discussion focuses on calculating the maximum exhaust velocity for a De Laval nozzle using Bernoulli's equation for compressible gases. The user correctly assumes that the velocity at the inlet (u0) is zero and derives several equations, including the relationship between pressure ratios and Mach number (M). Key equations include the pressure ratio at M=1 and the expression for M in terms of exhaust velocity and speed of sound (cs). The user seeks to determine the value of M to finalize the calculations for exhaust velocity.

PREREQUISITES
  • Understanding of Bernoulli's equation for compressible fluids
  • Familiarity with the concept of Mach number (M)
  • Knowledge of thermodynamic principles related to gas dynamics
  • Basic algebra skills for manipulating equations
NEXT STEPS
  • Study the derivation of Bernoulli's equation for compressible gases
  • Learn about the characteristics of De Laval nozzles and their applications
  • Explore the relationship between pressure ratios and Mach number in fluid dynamics
  • Investigate methods for calculating exhaust velocity in rocket propulsion systems
USEFUL FOR

Aerospace engineers, mechanical engineers, and students studying fluid dynamics or thermodynamics who are interested in nozzle design and performance optimization.

happyparticle
Messages
490
Reaction score
24
Homework Statement
Finding the maximum exhaust velocity for a De Laval nozzle in term of ##c_s##
Relevant Equations
##c_s = \sqrt{\frac{\gamma P_o}{\rho_0}}##

##M = \frac{u}{c_s}##

##\frac{P}{P_0} = (\frac{\rho}{\rho_0})^\gamma##
Here is what I did so far.

First of all, at ##P_0## (the opposite end of the exit), I supposed ##u_0 = 0##. (Is it correct?)

Hence, using Bernoulli's equation for a compressible gas.

##\frac{\gamma}{\gamma -1} \frac{P_0}{\rho_0} = \frac{u^2}{2} + \frac{\gamma}{\gamma -1} \frac{P}{\rho}##

##\frac{P_0}{\rho_0} = \frac{u^2}{2} (\frac{\gamma - 1 }{\gamma}) + \frac{P}{\rho}##

Then, using the relevant equations and with a little algebra.

##\frac{c_{s_0}^2}{c_s} = \frac{M^2}{2} (\gamma -1) + 1##

With the help of the third relevant equation I get:
##\frac{P_0}{P} = [\frac{M^2}{2} (\gamma -1) +1]^{\frac{\gamma}{\gamma - 1}}##

Also, knowing that where the cross-section is the lowest, M =1.

##\frac{P_0}{P} = [\frac{1}{2} (\gamma -1) +1]^{\frac{\gamma}{\gamma - 1}}##

Then, I would like to have the ratio between the pressure at #M=1# and at the exit.

##\frac{P_0}{P} \frac{P_1}{P_0} = \frac{P_1}{P}##

After some algebra I get:

##(\frac{P_1}{P})^{\frac{\gamma -1}{\gamma}} = M^2 (\frac{\gamma - 1}{ \gamma + 1}) + \frac{2}{\gamma + 1}##

From here, I think all I need is to find the value of M. However, I don't see how I could do that.
 
Physics news on Phys.org
Finally, since ##M= u_{exhaust}/c_s##, All I have to find is ##(\frac{P_1}{P})^{\frac{\gamma -1}{\gamma}}##.

Also, knowing that ##(\frac{P_0}{P_1})^{\frac{\gamma -1}{\gamma}} = \frac{\gamma +1}{2}##

I guess I only need to find ## \frac{P_0}{P}##.
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K