Meaning of Spacetime Foliations

  • Context: Graduate 
  • Thread starter Thread starter stglyde
  • Start date Start date
  • Tags Tags
    Spacetime
Click For Summary
SUMMARY

The discussion centers on the concept of spacetime foliations as introduced by Tim Maudlin in his article "Non-Local Correlations in Quantum Theory: How the Trick Might Be Done." Participants debate the implications of adding spacetime foliations to both Newtonian absolute space and Lorentz spacetime, particularly in relation to Bohmian mechanics and its non-local nature. Maudlin suggests that a preferred frame can be established through these foliations, which raises questions about the compatibility of such structures with relativistic principles. The conversation highlights the need for clarity on how these new structures differ from traditional Lorentzian spacetime and their impact on simultaneity and causality.

PREREQUISITES
  • Understanding of Lorentzian and Galilean invariance
  • Familiarity with Bohmian mechanics and its interpretations
  • Knowledge of spacetime diagrams and their role in relativity
  • Concept of non-locality in quantum mechanics
NEXT STEPS
  • Research "Tim Maudlin's theories on spacetime structure" for deeper insights into his arguments.
  • Explore "Bohmian mechanics and non-locality" to understand its implications in quantum theory.
  • Study "Spacetime foliations in general relativity" to grasp their significance in modern physics.
  • Investigate "The role of preferred frames in relativity" to clarify their impact on physical theories.
USEFUL FOR

Physicists, philosophers of science, and students of quantum mechanics seeking to understand the complexities of spacetime structures and their implications for theories of non-locality and relativity.

  • #91
The following are important exchanges between Demystifier (Nikolic) and Physicforums only challenger (Maaneli). The contents are important because what is at stake is the soul of physics and the great debate about non-locality.

Selected vital quotes from the thread "Re: Pilot wave theory, fundamental forces":

Maaneli: the relativity of simultaneity is nevertheless a consequence of the metrical structure of Minkowski spacetime

Demystifier: No, this is not true. What is true is that the metrical structure of Minkowski spacetime implies relativity of simultaneity IF THERE IS NO ANY OTHER STRUCTURE. But in the case we are considering there is another structure. And this additional structure is not the parameter s (as you might naively think), but the non-local wave function. (Or the scalar potential in the classical setting discussed in http://xxx.lanl.gov/abs/1006.1986.)

And yet, you can see that this nonlocal wave function (or the scalar potential) is compatible with the metrical structure of Minkowski spacetime and does not introduce a foliation-like structure.

So, does it mean that you agree that WITH example of my theory there IS a known dynamical structure that is consistent with the metrical structure of Minkowski spacetime, and yet violates the relativity of simultaneity?

By the way, one can introduce such a structure even in classical local relativistic mechanics. Consider two twins who initially have the same velocity and same position, and their clocks show the same time. After that, they split apart, and each has a different trajectory, independent of each other. Yet, one can consider pairs of points on two trajectories which have THE SAME VALUE OF PROPER TIME (showed by a local clock on each trajectory). Such a structure (defined at least mathematically, if not experimentally) also can be said to violate relativity of simultaneity, in a way very similar to that of my theory. Of course, there is a difference, but the similarity may be illuminating too.

Demystifier: Or let me use an analogy with nonrelativistic BM. A point is space is denoted as r=(x,y,z). Consider two particles with space positions {\bf r}_1 and {\bf r}_2 at a given time t. There is a Cartesian frame (given by a rotation of the original Cartesian frame) in which {\bf r}_1 and {\bf r}_2 have the same value of z. In this frame, we say that the interaction between these two particles is z-taneous. Does it lead to any paradoxes? Does it mean there is a preferred z-coordinate? Does it mean there is a preferred foliation of space into 2-surfaces? Whatever your answer is, the same answer applies to analogous questions in relativistic-covariant BM. And if you still don't get it, then look at the equations of relativistic-covariant BM again.


Maaneli: ... by virtue of the fact that you have to synchronize the initial (spacetime) positions of the particles at a common time s,

Demystifier: The parameter s is not time.

Maaneli: But as a "joint parameter", it plays precisely the role of a universal time parameter for the evolution of the particle spacetime coordinates. Yes, I realize that the wavefunction on configuration spacetime doesn't depend on s, but that doesn't mean that s cannot also be interpreted as a time parameter (even if it is a fictitious one).

Demystifier: You are right. The parameter s can be interpreted as a sort of time. However, this is more like Newton absolute time, note like Einstein relativistic time [which I already implied by saying it is a UNIVERSAL time parameter]. OK, that's clear enough. And you are right, nonlocal signaling violates the relativity of simultaneity. Yet, in the next post I explain why it is NOT in contradiction with metrical structure of Minkowski spacetime.

(Maaneli in other message mentioned Nikolic theory has foliation like structure)

Demystifer: No, there is no foliation-like structure. The synchronization parameter is NOT something additional to the SR metrical structure, just as time in nonrelativistic BM is NOT something additional to the 3-space rotational-symmetry structure.

My point is that relativistic-covariant BM in 4-dimensional spacetime is ANALOGOUS to nonrelativistic BM in 3-dimensional space. I am just trying to make you understand this ANALOGY, because when you do, you will suddenly say: "Oh, THAT is what you meant. Now I get it. In fact, it is trivial." But it is essential that you see this analogy by yourself, while I can only guide you in the right direction. And at the moment, it seems to me that you don't have a clue what I am talking about, because you are not able to see the analogy. And that is probably because you are unable to think of time as just another "space" coordinate.

To help you think in the correct way, let me suggest you a mental trick. For a moment, FORGET that the spacetime metric has the form (+---). Instead , think of metric as just any metric, which can be (++++), (++--), or whatever. In fact, simply don't think about metric at all. Just pretend that you have a 4-dimensional space with some unspecified metric. Or if it is easier for you, just pretend that the metric is (++++). And forget that one of the coordinates is called "time". (Who cares about names, anyway?) And NOW try to understand again what equations of relativistic-covariant BM are actually saying. This trick works for many physicists, so it could work for you as well.

(Note: the last exchange between Demystifer and Maaneli occurred in Jun 22, 2010)

Maaneli: Of course, by covariant, you must mean "fundamentally covariant", because anyone can construct a covariant particle dynamics on a preferred foliation. I think it might be best for us to resume our discussion on the old thread, "Pilot waves, fundamental forces, etc.", regarding whether your proposal of using a synchronization parameter and treating time and space on equal footing is truly fundamentally covariant or not, and whether or not it does have the condition of equivariance. We never got to finish that discussion, mainly because I became too overwhelmed with deadlines and work and kept forgetting to reply to the thread. My apologies about that.

Demystifier: I would like to continue the discussion there. But I will wait for your first step.

(But they never continued. And since June, 2010. There is no other challenger to Demystifier. And he continued to share his papers which are referenced in peer reviewed journals but unfortunately, no one read it much. Therefore let us continue and settle it once and for all whether Demystifier is fundamentally correct. Before I make a new thread out of this. Just want some comment from you PeterDonis on what you think about all this. Thanks)
 
Physics news on Phys.org
  • #92
harrylin said:
I'm now far behind with looking at the interesting references of this thread, that's for later. Consequently I can't really comment on your conclusions. My first impression is that those "flashing" foliation theories are pseudo science, and I think that the Copenhagen interpretation is a pseudo interpretation (effectively a physical non-interpretation). :-p Anyway, the subtle thing about "spacetime" is that of course space-time is (and has been from the start) an important part of classical mechanics. Only Minkowskian (as well as post-Minkowskian) Spacetime is a new concept that corresponds to a popular interpretation of relativistic mechanics.

Look at the nice graphic illustration (even in motion) of the flashes in Tumulka's presentation:

http://www.math.rutgers.edu/~tumulka/talks/penn09.pdf

Mulling at them would give a good work out in our final search for Quantum Gravity.
 
  • #93
I've just noticed this thread, in which some of my papers have been discussed a lot.

If someone is still interested, now I can answer any related questions.

In addition, I would like to mention my very recent paper in which I propose a different relativistic-covariant version of Bohmian mechanics, in which a "preferred" foliation exists, but is determined in a covariant way by the relativistic-invariant wave function:
http://xxx.lanl.gov/abs/1205.4102
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
995
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 35 ·
2
Replies
35
Views
6K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K