Measure angular velocity and acceleration from missing tooth wheel

AI Thread Summary
To develop a mathematical model for a digital ignition system, measuring angular velocity and acceleration is essential. Using a 36-1 tooth wheel, one can determine angular velocity by measuring the periods of consecutive teeth. Subtracting the periods of the same tooth at different times provides the necessary data to calculate angular acceleration. For improved accuracy, collecting multiple period measurements allows for plotting angular velocities against time, revealing the nature of angular acceleration. This method ensures a reliable assessment of the system's dynamics.
nick26
Messages
1
Reaction score
0
Hi,
I need to come up with a math model for a digital ignition system. I've been thinking about it and I think that I need to measure 2 things to be able to calculate when I have to start charging the coil. They are the angular velocity and the acceleration but how can I do it? the idea is to use a 36-1 wheel and then measure each tooth periods. If I subtract the period of two teeth will that give me the acceleration?

Thanks!
 
Physics news on Phys.org
Subtracting the period of two teeth will give the difference of the periods of these two teeth.

You will need at least two tooth periods, that is measure the period of the same tooth two consecutive times. The average angular speeds for the two periods are ##\bar \omega_1=\dfrac{2\pi}{T_1}## and ##\bar \omega_2=\dfrac{2\pi}{T_2}##.

Assuming constant angular acceleration (you need to convince yourself that this is the case in your system - see below how), the instantaneous angular speed is equal to the average at the half-time mark. In other words,

##\omega_1=\dfrac{2\pi}{T_1}## at ##t_1=\dfrac{T_1}{2}##
and
##\omega_2=\dfrac{2\pi}{T_2}## at ##t_2=T_1+\dfrac{T_2}{2}##.

Then the angular acceleration will be given by ##\alpha=\dfrac{\omega_2-\omega_1}{t_2-t_1}.##

If you can collect many successive periods, say 10 or so, then you will improve your accuracy because you will be able to plot the ##\omega_i## points vs. the ##t_i## points. You should get a straight line with a slope equal to the angular acceleration. If the line is not straight, then the angular acceleration is not constant.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top