Measurement of a Hydrogen qubit?

Julian Blair
Messages
15
Reaction score
0
Given a 2 state hydrogen atom in a superimposed state, how does one measure it for either of its two states?
 
Physics news on Phys.org
I don't think your question is well posed. In quantum mechanics the state of a system is not an "observable". The observables (the quantities that you measure in experiments) are represented by hermitian operators that act on the states of the system.
 
The energy eigenfunctions of a hydrogen atom are infinite - its not a two state system.

Thanks
Bill
 
OK, let me explain a bit better. The ground and 1st excited states of an Hydrogen atom are often given as an example of a qubit for use in quantum computing. The energies of these states are definitely eigenstates of the Hamiltonian. My question has to do with an Hydrogen qubit in a superimposed state comprising both the ground and 1st excited state. If this qubit has been altered via a quantum algorithm, then one would like to measure the probabilities that it is in state |0> or state |1>. How could this be done?
Of course this measurement would have to be re-done multiple times to arrive at an estimation of the probabilities.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Replies
22
Views
3K
Replies
29
Views
2K
Replies
17
Views
3K
Replies
4
Views
2K
Replies
9
Views
3K
Replies
1
Views
2K
Back
Top