Measuring Sets: Finite vs. Countably Infinite

zeebo17
Messages
40
Reaction score
0
I just started learning some basic measure theory.

Could someone explain the difference between \overline{F(A \times A)} and \overline{F(A) \times F(A)} where A is a finite set. Also, how would this be different in A was an countably infinite set?

Thanks!
 
Physics news on Phys.org
zeebo17 said:
where A is a finite set.

It is nice you told us what A is. But you didn't say what F and the bar are.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top