MHB Metallurgy- Road Construction - linear equation

AI Thread Summary
To produce 18-karat gold from 15 grams of 14-karat gold, 10 grams of pure gold should be melted. In road construction, after the new machine works for 4 hours, it completes one-third of the job, leaving two-thirds for the older machine. The older machine, which takes 16 hours to complete half a mile, will take approximately 10 and 2/3 hours to finish the remaining work. A straightforward method for the second problem involves calculating the portion completed by the new machine and determining the remaining work for the older machine. Overall, both problems can be approached with different methods for clarity and verification.
paulmdrdo1
Messages
382
Reaction score
0
1. Metallurgy. How much pure gold should be melted with
15 grams of 14-karat gold to produce 18-karat gold?

2. Road Construction. A new machine that deposits cement
for a road requires 12 hours to complete a one-half mile section of road. An older machine requires 16 hours to pave the same amount of road. After depositing cement for 4 hours, the new machine develops a mechanical problem and quits working. The older machine is brought into place and continues the job. How long does it take the older machine to complete the job?

my attempt on 1st problem
x = amount of pure gold
$15\frac{14}{24}+x=\frac{18}{24}(15+x)$

x = 10 grams

for 2nd I get the correct answer but I'm not sure If I modeled the situation correctly.

$\frac{0.5}{12}\cdot 4+\frac{0.5}{16}\cdot x=0.5$

x = 10 and 2/3 hr.

can you give me a more straight forward method for problem 1 and 2. just for variety-of-method's sake.

thanks!
 
Last edited:
Mathematics news on Phys.org
paulmdrdo said:
1. Metallurgy. How much pure gold should be melted with
15 grams of 14-karat gold to produce 18-karat gold?
...
my attempt on 1st problem
x = amount of pure gold
$15\frac{14}{24}+x=\frac{18}{24}(15+x)$

x = 10 grams
I agree.

paulmdrdo said:
2. Road Construction. A new machine that deposits cement
for a road requires 12 hours to complete a one-half mile section of road. An older machine requires 16 hours to pave the same amount of road. After depositing cement for 4 hours, the new machine develops a mechanical problem and quits working. The older machine is brought into place and continues the job. How long does it take the older machine to complete the job?
...
$\frac{0.5}{12}\cdot 4+\frac{0.5}{16}\cdot x=0.5$

x = 10 and 2/3 hr.
To help checking, it's good to say what $x$ represents. I assume it is the time it take the older machine to complete the job. Then $4/12$ is the part of the road completed by the new machine, and $x/16$ is the part completed by the old machine. Together they make up 1, i.e.,
\[
\frac{4}{12}+\frac{x}{16}=1.
\]
This equation is equivalent to yours, but I don't understand what 0.5 represents in your equation.

I would solve the second problem without equations. The part completed by the new machine is 4/12 = 1/3. The remaining part is 1 - 1/3 = 2/3. Therefore, the old machine has to work 16 * 2/3 = 10 2/3.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top