- #1

- 9

- 0

## Homework Statement

Let A, B, C, D be the vertices of a convex quadrilateral. Convexity means that for each lines L(ab), L(bc), L(cd), L(da) the quadrilateral lies in one of its half-planes. Find the point P for which the minimum Min(d(P,A)+d(P,B)+d(P,C)+d(P,D)) is realized.

## Homework Equations

Min(d(P,A)+d(P,B)+d(P,C)+d(P,D)) is the equation we're trying to minimize.

distance=d(X,Y)=abs(X-Y)=sqrt((X-Y)x(X-Y)) where "x" is the dot product.

## The Attempt at a Solution

For starters, this is for my Euclidean geometry class, so there's no coordinates or Calculus, I presume. My initial guess is that the point that would minimize those distances would be the intersection of the diagonals but I can't figure out why.