Modal mass and kinetic energy in FEM modal analysis

AI Thread Summary
The discussion focuses on the use of Ansys for modal analysis of a clamped beam using 20-node brick elements. The user successfully computes effective mass and kinetic energy but is initially confused about the modal mass and kinetic energy calculations, which are derived from unit normalized modes. The correct formulas for modal mass and kinetic energy are clarified, indicating that the modal mass is calculated using the eigenvector and mass matrix, while kinetic energy is derived from modal mass and frequency. Additionally, the user inquires about calculating participation factors in a locally defined coordinate system, as Ansys outputs results in a global coordinate system. The conversation highlights the complexities of modal analysis in FEM and the importance of understanding normalization in calculations.
Arjan82
Messages
624
Reaction score
618
TL;DR Summary
What is the formula for modal mass and kinetic energy of a modal analysis FEM computation? I do *not* mean effective modal mass.
So, I use Ansys (well known FEM software) and get the next output for a modal analysis toy problem (If you happen to know Ansys that's a pre, but I promise it shouldn't matter). The problem is a simple beam, clamped at one end. I used 160 20-node brick elements to solve it (so no Timoshenko beams or something like that).

[CODE title="Ansys output"]
The modes requested are mass normalized (Nrmkey on MODOPT). However,
the modal masses and kinetic energies below are calculated with unit
normalized modes.

***** MODAL MASSES, KINETIC ENERGIES, AND TRANSLATIONAL EFFECTIVE MASSES SUMMARY *****

EFFECTIVE MASS
MODE FREQUENCY MODAL MASS KENE | X-DIR RATIO% Y-DIR RATIO% Z-DIR RATIO%
1 81.73 39.42 0.5199E+07 | 0.000 0.00 95.85 61.05 0.000 0.00
2 159.3 40.53 0.2030E+08 | 0.000 0.00 0.000 0.00 96.07 61.19
3 490.2 41.77 0.1981E+09 | 0.000 0.00 30.22 19.25 0.000 0.00
4 593.4 31.73 0.2206E+09 | 0.000 0.00 0.000 0.00 0.000 0.00
5 859.8 48.92 0.7138E+09 | 0.000 0.00 0.000 0.00 31.92 20.33
6 1268. 77.93 0.2472E+10 | 126.6 80.61 0.000 0.00 0.000 0.00
[/CODE]

So I know exactly how to get the effective mass, which is dependent on direction. And by exactly I mean exactly. I extract the mass and stiffness matrix from Ansys, compute the eigenvectors of this problem (with Matlab):

$$
\left[ K \right] \left\{ d \right\} = w \left[ M \right] \left\{ d \right\}
$$

with ##\left[ K \right] ## the stiffness matrix, ##\left[ M \right]## the mass matrix, ##\left\{ d \right\}## an eigenvector and ##w = \omega^2## the eigenvalue. All is 'mass normalized' such that ##\left\{ d \right\}^T \left[ M \right] \left\{ d \right\} = 1##. And now we can compute the participation factor for the x-direction (assuming mass normalization):

$$
L_x = \left\{ d \right\}^T \left[ M \right] \left\{ r_x \right\}
$$

with ##\left\{ r_x \right\}## the influence vector, or just a vector with 1's at all degrees of freedom of the x-direction and 0 everywhere else. And now the effective modal mass in the x-direction is simply ##L_x^2##. If I do this with e.g. Matlab I get exactly the same results as Ansys does (all digits are the same, except maybe the last). So, no problem there.

But the modal mass and kinetic energy (KENE) on the left side of this table are a mystery to me. I need the formula for that but cannot seem to find it, not in the documentation of Ansys, not on the internet (for which the results get swamped by explanations of effective mass) and not in any book about the subject I own. Who knows how to compute those numbers?
 
Engineering news on Phys.org
Allright, apparently the documentation of Ansys is also a mystery for me, the answer is just right in there 😆. Also, I'm overthinking things, as usual 🤔

The modal mass is simply

$$
m = \left\{ d \right\}^T \left[ M \right] \left\{ d \right\}
$$

And the kinetic energy

$$
KE = \frac{1}{2} m \omega^2
$$
 
Oh, and crucially, the ##\left\{d\right\}## vector is not mass normalized, but unit normalized (i.e. the max absolute value of ##\left\{d\right\}## is equal to 1), otherwise ##m## would just be 1.
 
How to get participations factors in a different co-ordinate system altogether?...The ANSYS output is always in global co-ordinate system. And, then you can get PF in X,Y,Z,Rx,Ry,Rz directions each. But, what if what I want to calculate PF in a locally defined co-ordinate system?
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top