I Modelling Liquid Hydrogen Boil-Off Rate

  • I
  • Thread starter Thread starter JB312
  • Start date Start date
  • Tags Tags
    Modelling
AI Thread Summary
The discussion focuses on simulating the boil-off rate of liquid hydrogen using the boilFAST tool, which unexpectedly shows a negative spike in the boil-off rate, suggesting an impossible increase in liquid volume. Key parameters include a horizontal cylinder tank with hemispherical end caps, a volume of 30.02 m³, and an initial liquid volume of 29.44 m³ at 20 K. The insulation has a thermal conductivity of 0.00009 W m^-2 K^-1 and a thickness of 42.7 mm, leading to a heat transfer coefficient of 0.0021 W m^-2 K^-1. The calculated heating rate is approximately 28.5 W, resulting in an estimated boil-off of about 0.6 kg over 2.5 hours. The inquiry seeks additional insights or alternative simulation tools for modeling this scenario effectively.
JB312
Messages
4
Reaction score
5
TL;DR Summary
I am working on modelling the liquid hydrogen boil-off for a storage tank (30m3) over a period of 2.5 hours using three different insulation materials - polyurethane foam, aerogel, and MLI.
The relevant thermal conductivity, heat transfer coefficients, and thicknesses along with all other required parameters are known. I have attempted to use the online simulation tool boilFAST to simulate each scenario however, the results show a negative spike in boil-off rate which I don't see being possible as this would imply that there is an increase in the volume of liquid hydrogen. Does anyone have any experience in modelling similar scenarios or know another simulation tool that might be useful? Thanks in advance.
 
Science news on Phys.org
Please provide the data on heat transfer coefficients, thicknesses, thermal conductivities, shape. Also, starting mass- or volume fraction of liquid and starting temperature or pressure.
 
  • Like
Likes JB312 and berkeman
Certainly. Shape = horizontal cylinder with hemispherical end caps, volume = 30.02 m^3, initial liquid volume = 29.44 m^3, inner diameter = 2.93 m, length = 2.5 m (cylinder), relief pressure = 0.25 MPa, liquid temp = 20 K, pressure = 0.092 MPa, ambient temp = 293.15 K, insulation (MLI) thermal conductivity k = 0.00009 W m^-2 K^-1, thickness = 42.7 mm, corresponding heat transfer coefficient (k/thickness) = 0.0021 W m^-2 K^-1. Thank you very much for any help.
 
What is the tank made of, and what is its wall thickness?
 
Thermodynamic data on H2 are given in this reference: https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph168.pdf
The surface area for heat transfer is about 50 M^2, so the rate of heating is on the order of $$\dot{Q}=50(0.0021)(293-22)=28.5 W=102\ kJ/hr$$
The specific volume of liquid H2 at 20 K is 0.01412 m^3/kg, so the mass of liquid H2 originally in the tank is 29.44/0.01412 = 2085 kg.. At these temperatures, the heat of vaporization is about 450 kJ/kg, So, in 2.5 hours, roughly 0.6 kg would boil off.
 
Last edited:
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top