I Boiling off Liquid Argon Using A High Powered Resistor

280
23
Summary
How do I boil off Liquid Argon using a high powered resistor (100W), is it at all possible?
I understand that liquid argon is constantly boiling when it's in contact with the air in the lab, but I want to increase that boil off rate. Because of that, I got myself a high powered resistor (1 ohm, 100 W) and got the highest current power supply I had (5A). When I supply about 5 V and 5 A to it and leave it in air, it heats up quite a lot. I'm not exactly sure what the exact temperature is after like 3 minutes of running it, but if I put ice on it, it instantly melts it and then boils off the water.

I then put this resistor inside a dewar and fill it up with liquid argon and measure the amount of time it takes for the volume to boil off without the resistor being powered on. It takes about an hour. I then fill back in the same volume of argon and then supply current to the resistor and record the time and it comes out to be about an hour. It seems to me that having the resistor made no difference. In addition, when I take out the resistor (while it's still powered on and it's immersed in liquid), it's cold as ice! After I wait for a few minutes and leave it in air, it heats back up again. My guess for why this is happening is that there's not enough heat that the resistor is able to supply to boil off the liquid. Is that so? Will having multiple resistors then and a larger current source (so I can have a total power dissipation of, say 500W) solve the problem? Has anyone done this before?

I do have a cheaper solution, as opposed to buying an expensive high current power supply, which is to just surround my dewar with heating tape and crank it up to about 80-100 deg C, but I am really curious as to why my current method doesn't work. By the way, I wrote liquid argon everywhere since that's what we primarily use to do our experiments, but I did this specific test using liquid nitrogen. I suspect it would be even easier to increase the rate of boiling of nitrogen than argon since nitrogen's boiling point is lower than that of argon.

Thanks!
 

mjc123

Science Advisor
792
359
How big is your dewar? A rough calculation suggests your resistor would boil off ca. 500 mL liquid Ar per hour. Is that significant compared to the volume of your dewar? But how good is your dewar anyway, if it boils off in an hour?
 
33,239
8,957
A better power supply and more resistors will help. If you have a lot of liquid argon or nitrogen then 25 W won't do much (you should be able to calculate that). To make it worse, the resistance of the resistor will probably be lower at cryogenic temperatures. Cable losses could be a concern, too.

If you have some place with a large surface area then you could spread out the liquid there and let the environment boil it off.

Make sure the place is well ventilated if this is indoors.
 

256bits

Gold Member
2,812
874
Summary: How do I boil off Liquid Argon using a high powered resistor (100W), is it at all possible?

It takes about an hour
You need a better clock. Maybe one that counts minutes and seconds, rather than "abouts".
 

Nugatory

Mentor
12,267
4,717
I suspect it would be even easier to increase the rate of boiling of nitrogen than argon since nitrogen's boiling point is lower than that of argon.
It’s not the boiling point you care about it, it’s the latent heat of evaporation (the energy required to turn a liquid at the boiling point into vapor at the boiling point) that matters here. Google and a back of the envelope calculation will tell you how much heat you have to add to the dewar; once you know that you can consider how to produce that heat and whether your power supply is up to the job.
 

Vanadium 50

Staff Emeritus
Science Advisor
Education Advisor
23,099
5,388
It’s not the boiling point you care about it, it’s the latent heat of evaporation (the energy required to turn a liquid at the boiling point into vapor at the boiling point) that matters here.
This.

Also, the fact that nitrogen boils at 77K and argon at 88K is irrelevant because your liquid is at its boiling point, whatever it is.

Getting back to the problem at hand, 5V at 5A is 25W. The fact that the resistor is rated for 100W is irrelevant. The energy supplied to the dewar is therefore 90 kJ. Spending a few minutes with Google is a good idea, but half a liter per hour doesn't sound crazy. This is the equivalent to 3 drops per second.

More things to think about. Where is your resistor located. How do you know it is 1 ohm? More importantly, how do you know it is 1 ohm at 77K? Is your power supply constant voltage or constant current?
 
280
23
How big is your dewar? A rough calculation suggests your resistor would boil off ca. 500 mL liquid Ar per hour. Is that significant compared to the volume of your dewar? But how good is your dewar anyway, if it boils off in an hour?
So, I'd say I have about 10-20 L of liquid nitrogen. Regarding how good the dewar is, the one I'm using isn't the best and we typically surround our dewar with liquid argon, I didn't do this time since it was just a test.
 
280
23
You need a better clock. Maybe one that counts minutes and seconds, rather than "abouts".
Hahaha! I did use a stopwatch which can calculate up to seconds, but since it took 59 minutes, I didn't think it was too significant to mention that and just say about an hour. And what I really care about is the difference in boil off rate, not the absolute rate and I could figure that out with such approximation (I didn't mention 59 minutes in the question, but that's what I measured in both cases).
 
Last edited:
280
23
This.

Also, the fact that nitrogen boils at 77K and argon at 88K is irrelevant because your liquid is at its boiling point, whatever it is.
I agree that the temperature is irrelevant. But it does matter that the two liquids are different, right? Given that their heat capacities will be different because of this equation: Q = mCΔT (https://www.kentchemistry.com/links/Energy/SpecificHeat.htm)

Getting back to the problem at hand, 5V at 5A is 25W. The fact that the resistor is rated for 100W is irrelevant. The energy supplied to the dewar is therefore 90 kJ. Spending a few minutes with Google is a good idea, but half a liter per hour doesn't sound crazy. This is the equivalent to 3 drops per second.

More things to think about. Where is your resistor located. How do you know it is 1 ohm? More importantly, how do you know it is 1 ohm at 77K? Is your power supply constant voltage or constant current?
I agree that the rating of the resistor is irrelevant as long as I'm dissipating less power than the maximum that the resistor is capable of.

So, my dewar eventually will be closed (I left it open for the test since I cared more about the *difference* in boil off rate). The resistor is put at the bottom of the dewar. I did do a back of the envelope calculation and the energy I got was like 3600 kJ of energy... but after talking to a grad student, we thought that *any* heat would probably be enough to increase the rate of boiling by a lot since liquid argon boils even at room temperature. But after doing the experiment, I trust the calculations more and believe that we really need hundreds, if not thousands, of watts to get a sufficient boil off rate.

To answer your questions, I know it's 1 ohm because that's what they're rated to be and I measured using a multimeter. I do not think they're 1 ohm at 77K, but I thought it's irrelevant what the resistance is as long as I know what the power dissipated is, which I could calculate given what the current drawn from the power supply was and the voltage output. The way I work with my power supply is I either set the voltage to a specific value and if it's low enough, that limits the current drawn or I set a specific current, while having a high limit on the voltage and that limits the amount of voltage drawn. My power supply can give out max. of 30 V and 5 A so I set the voltage to be 10V and current to be 4.9A and it draws 4.9A of current and the voltage is at about 5V.
 

russ_watters

Mentor
18,727
4,942
I agree that the temperature is irrelevant. But it does matter that the two liquids are different, right? Given that their heat capacities will be different because of this equation: Q = mCΔT (https://www.kentchemistry.com/links/Energy/SpecificHeat.htm)
No, that equation describes the amount of energy required to raise the temperature of the liquid (or vice versa). But your liquid temperature is fixed, right? So it doesn't apply, right?

Again: what matters is the power output of the resistor relative to the heat of vaporization of the liquid.
So, my dewar eventually will be closed (I left it open for the test since I cared more about the *difference* in boil off rate). The resistor is put at the bottom of the dewar. I did do a back of the envelope calculation and the energy I got was like 3600 kJ of energy...
In what time period? .....I'm pretty sure that's wrong. Please show the math you used.
....but after talking to a grad student, we thought that *any* heat would probably be enough to increase the rate of boiling by a lot since liquid argon boils even at room temperature.
That makes no sense at all - it doesn't reflect an understanding of the thermodynamics of this situation at all, so I hope you misunderstood this grad student. This is a really straightforward heat vs mass transfer problem. Freshmen physics or chemistry classes often include a lab where they put a pot of water on a hot plate and measure/calculate how long it will take to boil off. Same exact problem. Please try to do the math here, as we've described the problem; and if you are still unsure, ask where you are having an issue with it.
 

Vanadium 50

Staff Emeritus
Science Advisor
Education Advisor
23,099
5,388
Please try to do the math here, as we've described the problem; and if you are still unsure, ask where you are having an issue with it.
One number that will be illuminating is the total energy needed to boil the LN2 away (let's not talk about argon, because from the description argon is not involved).
 

russ_watters

Mentor
18,727
4,942
One number that will be illuminating is the total energy needed to boil the LN2 away (let's not talk about argon, because from the description argon is not involved).
Yes, and then divide that by the power output of the resistor...
 
33,239
8,957
To answer your questions, I know it's 1 ohm because that's what they're rated to be and I measured using a multimeter. I do not think they're 1 ohm at 77K, but I thought it's irrelevant what the resistance is as long as I know what the power dissipated is
Some of that power will be dissipated in cables instead of the resistor.
So, my dewar eventually will be closed (I left it open for the test since I cared more about the *difference* in boil off rate).
Why would you close it if you want to get rid of the liquid as quickly as possible?
In what time period? .....I'm pretty sure that's wrong. Please show the math you used.
It's an energy, it doesn't have a time period, and the number looks plausible.
That makes no sense at all - it doesn't reflect an understanding of the thermodynamics of this situation at all, so I hope you misunderstood this grad student.
Huh? Quite sure OP meant room temperature for the environment, which does indeed make nitrogen or argon boil, and adding a heater will speed up this process.
 

russ_watters

Mentor
18,727
4,942
It's an energy, it doesn't have a time period...
It does if he's calculating the amount of energy added to the dwar by his resistor. The entire point of this exercise is to decrease time.
...and the number looks plausible.
My read of the statement was that he's saying the energy added by the resistor is 3,600 kJ. V50 is right that it is 90 kJ; 25 watts for an hour. If the OP was thinking of his resistor being a 100W resistor, he's still off by a factor of 10.

Perhaps you are thinking he's saying that's the heat of vaporization. That could be - 3,600 kJ would be close, but I couldn't duplicate it. In context it doesn't look like it to me. The OP can clarify.
Huh? Quite sure OP meant room temperature for the environment, which does indeed make nitrogen or argon boil, and adding a heater will speed up this process.
Here's that sentence again:
......but after talking to a grad student, we thought that *any* heat would probably be enough to increase the rate of boiling by a lot since liquid argon boils even at room temperature.
My read is that the grad student thought adding even a tiny heater to the dewar would vastly increase the boiling rate. That's why the OP is here -- he put in a tiny heater and it didn't increase the boiling rate much.

Also, the fact that the dewar is sitting in room temperature air doesn't have anything to do with it, so that part is an odd thing to add.....unless it is connected to the OP's confusion about why the resistor was cold when put into the dewar. It strikes me as a confusion about the difference between temperature and heat. But I'm less sure about that.
 
33,239
8,957
My read of the statement was that he's saying the energy added by the resistor is 3,600 kJ.
I read the 3600 kJ as energy needed to boil away the nitrogen. That is in the right range.
My read is that the grad student thought adding even a tiny heater to the dewar would vastly increase the boiling rate.
OP didn't specify the rate there. Just "faster". Which is qualitatively correct.
 

Vanadium 50

Staff Emeritus
Science Advisor
Education Advisor
23,099
5,388
The whole "faster" discussion for some reason reminds me of the old "you're in a balloon" joke.

The OP was surprised that his heater didn't make a substantial difference. Comparing the energy it takes to boil the LN2 with the energy supplied would have cleared this up: he's adding a few percent to the existing heat leak. (Aside: he has a heat leak of order a kilowatt. Yowza!)

The OP also has a misunderstanding of latent heat and heat capacity, and likely one about temperature and heat as well. It would be good to clear this up because a) it's what we do at PF, b) he's working with cryogens and it is therefore a safety issue, and c) he has ambitions to go to elite graduate schools, and they will expect him to have learned this.
 
280
23
No, that equation describes the amount of energy required to raise the temperature of the liquid (or vice versa). But your liquid temperature is fixed, right? So it doesn't apply, right?
Yeah, I think that's probably right. I say probably because I think it's applicable to this specific test that I did, but maybe not in the final experiment. The reason why I used the equation of heat capacity is because this is what my actual experiment was going to look like: I would first put my dewar in high vacuum and then fill it with liquid argon. After that, I made a crude approximation to find out the power I may need and assumed that initially the argon wouldn't be boiling at all (since it's not at room temperature as the dewar was closed and evacuated) and I would have to raise the temperature of it in order to make it boil. I didn't go through the process of first calculating the heat it takes to raise the liquid to its boiling point and then using specific heat to figure out how much of the liquid I'm converting to gas in what amount of time given the amount of heat I'm adding. That was my bad

Again: what matters is the power output of the resistor relative to the heat of vaporization of the liquid.
That's what I thought too and that's why I did the calculation first to find out exactly what power I needed.

In what time period? .....I'm pretty sure that's wrong. Please show the math you used.
So, I think that calculation is wrong, but for a different reason. Reason being that I calculated only the heat needed to raise the temperature of the liquid by a few Kelvin, but not the heat required to convert that volume to gas (note that the calculation which yielded 3600 kJ was to raise the temperature of about 100 L of liquid argon to about 10K). I used 10K since the difference in the temperature of liquid argon and its boiling point is about a few Kelvin, I think the time period would then be one hour.

Some of that power will be dissipated in cables instead of the resistor.
Will it be significant? Because when I have the resistor our in air, it get pretty warm (about 80 deg C or so) so I thought it's probably fine to ignore the dissipation from cables.

Why would you close it if you want to get rid of the liquid as quickly as possible?
Because the experiment will be done in high vacuum conditions. We first evacuate our cryostat and then fill it with liquid argon and do whatever experiments we need to do. In order to achieve high vacuum, we need to close the dewar...

My read of the statement was that he's saying the energy added by the resistor is 3,600 kJ
No no, maybe I didn't put my words clearly. That's the energy I calculated that I *need*. My power output with the current resistor is only 25 W, which will give me an energy of 90 kJ in an hour.

Also, the fact that the dewar is sitting in room temperature air doesn't have anything to do with it, so that part is an odd thing to add.....
I don't think it does either since I'm looking at the difference in boil off rate when I have the resistor powered on vs. when it is not. I thought to mention it to fully describe my setup

The OP also has a misunderstanding of latent heat and heat capacity, and likely one about temperature and heat as well.
I don't think I have a misunderstanding of either. I simply wasn't thorough enough in my calculations, which was my mistake.
 
280
23
My read is that the grad student thought adding even a tiny heater to the dewar would vastly increase the boiling rate. That's why the OP is here -- he put in a tiny heater and it didn't increase the boiling rate much.
Correct. I don't think the grad student thought it through, maybe he was in a hurry?
 

DaveC426913

Gold Member
18,189
1,802
If you have some place with a large surface area then you could spread out the liquid there and let the environment boil it off.
This should help a lot. Maximizing surface area should greatly increase evaporation rate.

* see sig-line caveat
 

Vanadium 50

Staff Emeritus
Science Advisor
Education Advisor
23,099
5,388
I don't think I have a misunderstanding of either. I simply wasn't thorough enough in my calculations, which was my mistake.
Given that their heat capacities will be different because of this equation: Q = mCΔT
No matter how thorough you are with Q = mCΔT you will not get the right answer. Because....

It’s not the boiling point you care about it, it’s the latent heat of evaporation
Again: what matters is the power output of the resistor relative to the heat of vaporization of the liquid.
If you are insisting that the wrong equation will give you the right answer, yes, you have a misunderstanding.
 
280
23
This should help a lot. Maximizing surface area should greatly increase evaporation rate.

* see sig-line caveat
My dewar is of a constant volume, I cannot change that during the experiment. I could transfer it to a different dewar and do the experiment there but because the volume will be greater in it, along with the surface area, I don't think it'll make a difference

No matter how thorough you are with Q = mCΔT you will not get the right answer. Because....
Correct, but if I wrote it right above, and maybe I didn't convey it properly, I said that my lack of thoroughness came from the fact that I didn't include latent heat in my calculation to actually account for converting the liquid to gas. I only considered the part of raising the liquid's temperature to its boiling point.

If you are insisting that the wrong equation will give you the right answer, yes, you have a misunderstanding.
I'm not insisting that the wrong equation will give me right answer. To the contrary, I admitted that my first calculations would've given me an incorrect answer. To be precise, it would have giving me lower heat than I actually need since I first need to heat the liquid to its boiling point (which I calculated) and then convert it to gas (which I missed). I don't understand where I insisted that the wrong equation will give me the right answer...I may have insisted that I do not have a misunderstanding when it comes to knowing the difference between heat and temperature and between latent heat and heat capacity, which I think I'm right about.
 

jbriggs444

Science Advisor
Homework Helper
7,567
2,601
Maximizing surface area should greatly increase evaporation rate.
I do not agree that evaporation rate is the crucial factor here. It is the rate at which heat is added to the fluid. As long as the fluid is at boiling temperature, evaporation will take place at whatever rate is needed to balance the heat flow.

Increasing surface area will increase heat flow which will, in turn, increase the evaporation rate.
 

256bits

Gold Member
2,812
874
I would first put my dewar in high vacuum and then fill it with liquid argon. After that, I made a crude approximation to find out the power I may need and assumed that initially the argon wouldn't be boiling at all (since it's not at room temperature as the dewar was closed and evacuated) and I would have to raise the temperature of it in order to make it boil.
I don't understand this.
You are putting liquid argon into an evacuated chamber and then attempting to heat the liquid?
If so, then you need to definitely take into account the vapour pressure as the temperature of the liquid rises.
We sure do not want your sealed chamber experiencing a too too much pressure stress.
Does it have a relief valve to limit the maximum pressure?

You have to look at the vapour pressure vs temperature of argon and do some more pretty fine calculations before you preform this experiment.

I couldn't find anything for argon.
But nitrogen.
At atmospheric pressure, liquid nitrogen boils at 77K.
If you increase the temperature of the liquid, which you would be doing in the closed chamber, the vapour pressure also increases. Cryogenic liquids have an expansion of around 700.
if you look at the chart, 101 kPa corresponds to a boiling temperature of 77K
A rising temperature, ( the chart does not go to room temperature ) - at 84 K you are already at 2 atm.
at 87 close to 3 atm
at 91 close to 4 atm.
and so on

No wonder that containers transporting cryogenic liquids, or containing them, are rated as being able to do so.
 

256bits

Gold Member
2,812
874
By the way, if I understand the setup correctly, I don't think you will see any boiling with a minimal heat addition, just a slow rise in temperature.
 

Want to reply to this thread?

"Boiling off Liquid Argon Using A High Powered Resistor" You must log in or register to reply here.

Related Threads for: Boiling off Liquid Argon Using A High Powered Resistor

  • Posted
Replies
13
Views
9K
Replies
12
Views
810
Replies
4
Views
2K
  • Posted
Replies
3
Views
7K
Replies
4
Views
3K
  • Posted
Replies
2
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top