I Models where all symmetries would be approximate?

AI Thread Summary
The discussion explores the possibility of models in physics where all fundamental symmetries, such as Poincaré and Lorentz invariance, are merely approximate rather than exact. While some theories allow for violations of specific symmetries, no widely studied models exist that propose all symmetries as approximate. Observational tests impose strict limits on deviations from these symmetries, but the leap from close approximations to exactness cannot be definitively proven due to inherent uncertainties in measurements. When theories suggest potential violations of symmetries, significant resources are often allocated to testing these claims. Ultimately, the principle of Occam's Razor suggests that theories should not complicate explanations without providing additional benefits.
Suekdccia
Messages
352
Reaction score
30
TL;DR Summary
Models where all symmetries would be approximate?
I found this interesting discussion here in Physics Forums (https://www.physicsforums.com/threads/are-all-symmetries-in-physics-just-approximations.1005038/) where the topic of all symmetries being approximate is discussed

Is there any model (for instance, some type of spacetime metric or geometry) compatible with our current understanding of physics where all known fundamental symmetries of nature (Poincaré, Lorentz, CPT, translational and internal invariances) would be approximate?
 
Space news on Phys.org
There are some models where one or some fundamental symmetries of Nature are violated (e.g. small Lorentz invariance violations are possible in some theories of quantum gravity such as here).

But, while I am not omniscient, I am not aware of any widely studied models in physics in which all known fundamental symmetries of Nature are approximate. I have never seen a preprint or published physics paper or even a blog post by a physicist describing such a model, despite reviewing preprints on more or less a daily basis for at least a decade.

Observational tests strictly limit the extent to which reality can deviate from these symmetries. But, of course, the conceptual leap of faith from a very close approximation of an exact symmetry to an exact symmetry can never be definitively proven with an observational test alone. This is because all experimental observations have some uncertainty, however slight.

When there is a well motivated theory about why some particular fundamental symmetry might not hold true, scientists will often devote substantial resources to doing particularly precise tests looking for violations of a fundamental symmetry. And, of course, in situations where such violations are discovered (e.g. the separate conservation of mass and energy, rather than merely the conservation of mass-energy) we stop calling that a fundamental symmetry anymore. So, unless you are a historian of science you don't notice those.

But at some point, Occam's Razor comes into play disfavoring elaborations of physical theories in these fundamental symmetries are not exact but are indistinguishable observationally from theories that are exact, without providing some other explanatory benefit.
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
Why was the Hubble constant assumed to be decreasing and slowing down (decelerating) the expansion rate of the Universe, while at the same time Dark Energy is presumably accelerating the expansion? And to thicken the plot. recent news from NASA indicates that the Hubble constant is now increasing. Can you clarify this enigma? Also., if the Hubble constant eventually decreases, why is there a lower limit to its value?
Back
Top