MHB Modifying values to lie within existence domain

  • Thread starter Thread starter Siron
  • Start date Start date
  • Tags Tags
    Domain Existence
Click For Summary
The discussion focuses on modifying parameters to ensure that specific constraints are met for the values of a, b, and c derived from given equations. The primary goal is to adjust the parameters w and s so that the conditions a < 0, 0 < b < 1.08148a^2, and q < c < 0 are satisfied. The user proposes a method to replace w with w' when b exceeds the upper limit and suggests that adjusting s is necessary to maintain the relationship between a, b, and c. The complexity of the equations involved, particularly for q, raises the possibility of employing numerical algorithms for finding solutions. The discussion emphasizes the need for a systematic approach to ensure all constraints are satisfied simultaneously.
Siron
Messages
148
Reaction score
0
Given three parameters:
$$a= \frac{(k-3)^2 \sqrt{v}}{s}, \ \ b = \frac{v}{s}(w-10s), \ \ c = s \sqrt{v}.$$
which exact values I know (that is, I know $v,s,k$ and $w$ exactly). I need to guarantee that $a<0$ (this is always satisfied in my calculations!) and
$$0<b<1.08148a^2$$
For instance, if $b>1.08148a^2$ then I will replace $w$ by $w'$ such that $b(v,s,w') = 1.08148a^2$ and hence $b(v,s,w') - \epsilon$ satisfies the constraint. Here $\epsilon>0$ is an arbitrary small number.Consider another parameter $c = s \sqrt{v}$. I now have to guarantee that:
$$a<0, \quad 0<b<1.08148a^2, \quad q < c < 0, \qquad (*)$$
where $q$ is the greatest real root of the quartic polynomial
$$(48a^2+16b)x^4 - (40a^3+168 ab)x^3+(-45a^4+225a^2b + 72b^2)x^2+(27a^3b-162 ab^2)x+27b^3.$$
The explicit expression (which is a function of $a$ and $b$) for $q<0$ is quite horrendous. However, to guarantee that $q<0$ is real, I need that $a<0$ and $0<b<1.08148a^2$. So my question is, suppose I know the values of $a,b$ and $c$ where $b$ and $c$ do not satisfy the constraints. How can I modify $w$ and $s$ (similarly as above) **beforehand**, such that the constraints are satisfied? An ideal solution would be: replace $(s,w)$ by $(s',w')$, which gives me modified values $a',b'$ and $c'$, such that
$$0<b'<1.08148(a')^2, \qquad q(a',b')<c'<0.$$Thanks in advance!
 
Physics news on Phys.org
UPDATE:

If for instance $b>1.08148a^2$ then I replace $w$ by $w'$ such that $b(v,s,w') = 1.08148a^2$ and then I extract $\epsilon>0$ to guarantee that the new value $b'(v,s,w')<1.0848a^2$ as required. On the other hand I also need to guarantee that $q(a,b)<c<0$. Since I adjusted $b$, $q(a,b)$ also changes and hence I need to guarantee that $q(a,b(v,s,w')) = q(a,1.08148a^2-\epsilon)<c<0$. However, to that end I have to adjust $s$ since $c(s,v) = s\sqrt{v}$. Since I adjust $s$ the value for $a$ and $b$ will be different as well, because they are functions of $s$. Therefore, replacing $(s,w)$ beforehand by $(s',w')$ such that the constraints are satisfied, comes down to solving the following system of equation for $(s',w')$
$$\begin{cases} b(v,s',w') = 1.08148(a(v,s',k))^2 \\ q(a',1.08148(a')^2-\epsilon )= s' \sqrt{v} \end{cases},$$
which is equivalent with
$$\begin{cases} \frac{v}{s'}(w'-10s') = 1.0848 \frac{(k-3)^2 v}{(s')^2} \\ q(a',1.0848(a')^2-\epsilon) = s' \sqrt{v} \end{cases}$$

Now, solving the first equation of the system for $w'$ is straightforward. The value for $s'$ should be computed from second equation. However, the expression for $q(a',1.08148(a')^2-\epsilon)$ is probably quite ugly (but it is possible to compute it). Maybe I should use a numerical algorithm here? Any suggestions?

Thanks!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
4K
Replies
22
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K