Moduloid - Abelian Unital Magma

  • Thread starter Thread starter Tom Piper
  • Start date Start date
  • Tags Tags
    Magma
Tom Piper
Messages
25
Reaction score
0
Magma as the mathematical object may be too big to be dealt with.
However I found the magma which is commutative and has the unit element
has some interesting properties which might be applicable to algebra
and topology. For details, please visit;
http://geocities.com/tontokohirorin/mathematics/moduloid/moduloid2.htm
 
Mathematics news on Phys.org
For those wondering, like me:

A magma is simple a set with a binary operation into itself (ie something like an operation on equivalence classes of binary trees indexed by the underlying set). Examples of which are, groups, groupoids, monoids etc.

The link is to a nicely presented page, though I don't have time to read it to see what it is saying. Perhaps a summary? An abstract, here?
 
matt grime said:
For those wondering, like me:

A magma is simple a set with a binary operation into itself (ie something like an operation on equivalence classes of binary trees indexed by the underlying set). Examples of which are, groups, groupoids, monoids etc.

The link is to a nicely presented page, though I don't have time to read it to see what it is saying. Perhaps a summary? An abstract, here?
Thank you for your comment. My website is regarding a generalization of residue arithmetic, in short. You may imagine the residue space in the linear space. I substituted the linear space by some quotient spaces such as sphere, real projective plane, Klein bottle, etc. Then I found the addition induced in that space does not form group, or even monoid in some cases. By discretizing that space, a finite set - or magma - is obtained. I thought that magma may characterize the quotient space in a certain meaning.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top