Momentum and Action: Understanding Lagrangian Mechanics

Click For Summary

Discussion Overview

The discussion centers around the concept of action in Lagrangian mechanics, specifically the expression for the variation of action and its implications within the framework of the least-action principle. Participants explore the conditions under which certain terms in the variation of action vanish, the relationship between different paths, and the implications of boundary conditions on the equations of motion.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant questions why the integral term in the variation of action is zero, suggesting a misunderstanding of the boundary conditions at the initial and final times.
  • Another participant explains that the least-action principle assumes variations are made with fixed boundaries, leading to the vanishing of the boundary term in the variation of action.
  • A participant seeks clarification on whether the distance between two points is represented by the condition ##\delta q(t_1)=0##, indicating a fixed initial position.
  • Discussion arises about how the value of action varies with changes in the final position while keeping the final time constant.
  • One participant cites an author’s explanation that paths are determined by initial and final conditions, leading to the conclusion that the integral term must be zero due to the paths obeying the equations of motion.
  • Another participant expresses confusion about the connection between the difference in velocities of the paths and the integral term being zero, suggesting that the extremum path condition is the key factor.
  • Clarification is provided that while paths differ at the endpoint, the initial points are the same, which is crucial for understanding the variation of action.

Areas of Agreement / Disagreement

Participants express differing views on the interpretation of the integral term in the variation of action and its relationship to the paths taken. There is no consensus on the connection between the difference in velocities and why the integral term vanishes, indicating ongoing debate and exploration of the topic.

Contextual Notes

Participants reference specific boundary conditions and the implications of varying paths, but there are unresolved aspects regarding the mathematical steps involved in justifying the vanishing of the integral term.

happyparticle
Messages
490
Reaction score
24
TL;DR
Action after a variation of ##q_2##
Hi,
In my book I have and expression that I don't really understand.
Using the definition of action ##\delta S = \frac{\partial L}{\partial \dot{q}} \delta q |_{t_1}^{t_2} + \int_{t_1}^{t_2} (\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}}) \delta q dt##
Where L is the lagrangian and q the position.

For a variation of ##q_2##

##\delta S = \frac{\partial L}{\partial \dot{q}} \delta q |_{t_2}##

I don't see why the integral on the right hand side is 0.
If I understand correctly, at ##t_1## I have 2 points, ##q_1## and ##q_2## and then at ##t_2##, ##q_2## moves but not ##q_1##
However, why we only have ##t_2## as lower limit for the first term on the right hand side and why the second term vanish?
 
Physics news on Phys.org
I guess you talk about the least-action principle in the Lagrangian form. Then by assumption you vary within the space of all trajectories with fixed boundaries at the initial and final time, i.e., ##\delta q(t_1)=0## and ##\delta q(t_2)=0##. That means that the boundary term in ##\delta S## vanishes. Then the action principle tells you that for the physical trajectory of the particle, i.e., for the solutions of the equations of motion, the integral must be vanish for otherwise arbitrary ##\delta q##. Then the fundamental lemma of variational calculus says that for this the expression in the bracket under the integral must vanish, i.e., that the equations of motion are given by the Euler-Lagrange equations of the least-action variational principle,
$$\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{q}}=\frac{\partial L}{\partial q}.$$
I don't know, what your secret book is discussing considering only one boundary term.
 
Is ##\delta q(t_1)=0## the distance between ##q_1## and ##q_2##?

Basically, in my situation, ##q_1## is fixed and there's a variation of ##q_2##. At the end I have ##\frac{\partial S}{\partial q} = p##
 
The value of the action ##S## for the actual path depends on the initial and final space-time points of the path. I think your book is probably discussing how the value of ##S## for the actual path varies when you make a small change in the final position ##q_2## of the path (but no change in the final time ##t_2##). See the first part of this article.
 
This is exactly what I have.

The author says:

"Both paths P,P′ are fully determined by their initial and final positions and times, so P,P′′ must correspond to slightly different initial velocities. The important point is that since both paths describe the natural dynamical development of the system from the initial conditions, the system obeys the equations of motion at all times along both paths, and therefore the integral term in the above equation is identically zero. "

However, I can see exactly why the term in the integral must be 0. I don't understand the link between the difference of velocity between both path and the integral term.
 
happyparticle said:
However, I can see exactly why the term in the integral must be 0.
Good

happyparticle said:
I don't understand the link between the difference of velocity between both path and the integral term.
The author points out that paths P and P' have different initial velocities. But, I don't think this fact is directly connected to why the integral term is zero. As I see it, the integral term is zero since P' represents a variation of P and P is an extremum path. So, the Euler-Lagrange equation is satisfied along P.

However, paths P' and P do not have the same end point ##q_2## at time ##t_2##. The endpoints differ by a small amount ##\delta q(t_2)##. This is accounted for by the term ##\frac{\partial L}{\partial \dot q} \delta q|_{t_2} \equiv \frac{\partial L}{\partial \dot q}|_{t_2} \delta q(t_2)##.

In your first post you said
happyparticle said:
If I understand correctly, at ##t_1## I have 2 points, ##q_1## and ##q_2## and then at ##t_2##, ##q_2## moves but not ##q_1##

At ##t_1##, paths P and P' have the same initial point ##q_1##. At ##t_2##, path P has ##q= q_2## and path P' has ##q = q_2 + \delta q(t_2)##.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
899
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K