I Momentum and Action: Understanding Lagrangian Mechanics

AI Thread Summary
The discussion centers on the expression for the variation of action in Lagrangian mechanics, specifically addressing why the integral term vanishes when considering variations of the path. It is established that the boundary conditions dictate that variations at the endpoints are zero, leading to the conclusion that the integral must equal zero for the actual path, which satisfies the Euler-Lagrange equations. The participants clarify that while paths P and P' differ in their final positions, the integral term's vanishing is due to the extremum condition of path P, not directly linked to the differences in initial velocities. The conversation emphasizes the importance of fixed endpoints in variational calculus and how they influence the action's value. Overall, the discussion highlights the relationship between variations in path and the principles of least action in classical mechanics.
happyparticle
Messages
490
Reaction score
24
TL;DR Summary
Action after a variation of ##q_2##
Hi,
In my book I have and expression that I don't really understand.
Using the definition of action ##\delta S = \frac{\partial L}{\partial \dot{q}} \delta q |_{t_1}^{t_2} + \int_{t_1}^{t_2} (\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}}) \delta q dt##
Where L is the lagrangian and q the position.

For a variation of ##q_2##

##\delta S = \frac{\partial L}{\partial \dot{q}} \delta q |_{t_2}##

I don't see why the integral on the right hand side is 0.
If I understand correctly, at ##t_1## I have 2 points, ##q_1## and ##q_2## and then at ##t_2##, ##q_2## moves but not ##q_1##
However, why we only have ##t_2## as lower limit for the first term on the right hand side and why the second term vanish?
 
Physics news on Phys.org
I guess you talk about the least-action principle in the Lagrangian form. Then by assumption you vary within the space of all trajectories with fixed boundaries at the initial and final time, i.e., ##\delta q(t_1)=0## and ##\delta q(t_2)=0##. That means that the boundary term in ##\delta S## vanishes. Then the action principle tells you that for the physical trajectory of the particle, i.e., for the solutions of the equations of motion, the integral must be vanish for otherwise arbitrary ##\delta q##. Then the fundamental lemma of variational calculus says that for this the expression in the bracket under the integral must vanish, i.e., that the equations of motion are given by the Euler-Lagrange equations of the least-action variational principle,
$$\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{q}}=\frac{\partial L}{\partial q}.$$
I don't know, what your secret book is discussing considering only one boundary term.
 
Is ##\delta q(t_1)=0## the distance between ##q_1## and ##q_2##?

Basically, in my situation, ##q_1## is fixed and there's a variation of ##q_2##. At the end I have ##\frac{\partial S}{\partial q} = p##
 
The value of the action ##S## for the actual path depends on the initial and final space-time points of the path. I think your book is probably discussing how the value of ##S## for the actual path varies when you make a small change in the final position ##q_2## of the path (but no change in the final time ##t_2##). See the first part of this article.
 
This is exactly what I have.

The author says:

"Both paths P,P′ are fully determined by their initial and final positions and times, so P,P′′ must correspond to slightly different initial velocities. The important point is that since both paths describe the natural dynamical development of the system from the initial conditions, the system obeys the equations of motion at all times along both paths, and therefore the integral term in the above equation is identically zero. "

However, I can see exactly why the term in the integral must be 0. I don't understand the link between the difference of velocity between both path and the integral term.
 
happyparticle said:
However, I can see exactly why the term in the integral must be 0.
Good

happyparticle said:
I don't understand the link between the difference of velocity between both path and the integral term.
The author points out that paths P and P' have different initial velocities. But, I don't think this fact is directly connected to why the integral term is zero. As I see it, the integral term is zero since P' represents a variation of P and P is an extremum path. So, the Euler-Lagrange equation is satisfied along P.

However, paths P' and P do not have the same end point ##q_2## at time ##t_2##. The endpoints differ by a small amount ##\delta q(t_2)##. This is accounted for by the term ##\frac{\partial L}{\partial \dot q} \delta q|_{t_2} \equiv \frac{\partial L}{\partial \dot q}|_{t_2} \delta q(t_2)##.

In your first post you said
happyparticle said:
If I understand correctly, at ##t_1## I have 2 points, ##q_1## and ##q_2## and then at ##t_2##, ##q_2## moves but not ##q_1##

At ##t_1##, paths P and P' have the same initial point ##q_1##. At ##t_2##, path P has ##q= q_2## and path P' has ##q = q_2 + \delta q(t_2)##.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top