A Momentum Constraint in GR: ADM Formalism

Sergei65
Messages
6
Reaction score
1
Momentum constraint in GR in ADM formalism is written in the form

$$\mathcal M_i=\gamma_{ij}D_k\pi^{kj},~~~~~~~~~~(1a)$$ or equivalently

$$\mathcal M_i=D_k\pi^{k}_i,~~~~~~~~~~(1b)$$ where
##\pi^{ij}=-\gamma^{1/2}\left(K^{ij}-\gamma^{ij}K\right)~##, ##K=\gamma^{ij}K_{ij}~##, ##\gamma=\det \gamma_{ij}~## and ##D_i~## is covariant derivative. This is from DeWitt1967 parer and original ADM parer.

However, those who deal with numerical relativity uses $$\mathcal
M_i=D_jK^j_i-D_iK.~~~~~~~~~~~~~~~(2)$$

What formula is right? (they coincides only if ##\gamma## does not depend on spatial coordinates, which is evidently not the case.
 
Physics news on Phys.org
Sergei65 said:
Momentum constraint in GR in ADM formalism is written in the form

$$\mathcal M_i=\gamma_{ij}D_k\pi^{kj},~~~~~~~~~~(1a)$$ or equivalently

$$\mathcal M_i=D_k\pi^{k}_i,~~~~~~~~~~(1b)$$ where
##\pi^{ij}=-\gamma^{1/2}\left(K^{ij}-\gamma^{ij}K\right)~##, ##K=\gamma^{ij}K_{ij}~##, ##\gamma=\det \gamma_{ij}~## and ##D_i~## is covariant derivative. This is from DeWitt1967 parer and original ADM parer.

However, those who deal with numerical relativity uses $$\mathcal
M_i=D_jK^j_i-D_iK.~~~~~~~~~~~~~~~(2)$$

What formula is right? (they coincides only if ##\gamma## does not depend on spatial coordinates, which is evidently not the case.

I think the equations 1a, 1b and 2 are all same (besides a factor of ##-\sqrt{\gamma}## in equation 2). To establish the equality you need to use the fact that the intrinsic covariant derivative is (pullback) metric compatible. Also ##D_i\sqrt{\gamma}=\frac{1}{2}\sqrt{\gamma}\gamma^{ab}D_i\gamma_{ab}=0##
 
  • Like
Likes Sergei65 and Dale
Let me ask, why we could not write ##D_i\sqrt {\gamma}=\partial_i \sqrt {\gamma}\sim\gamma^{ab}\partial_i\gamma_{ab}\ne0##? I ask this because it is well known that ##d\gamma\sim\gamma^{ab}d\gamma_{ab}##, where ##d## is usual differencial. From the other hand it seems that ##D_i\gamma=\partial_i \gamma##.
 
Last edited:
Last edited:
  • Like
Likes Ravi Mohan
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top