Momentum in a Head-on collision

AI Thread Summary
In a head-on collision between an electron and a muon, the reaction produces an electron neutrino and a muon neutrino. The center of mass frame energy is calculated to be 84 GeV, leading to a muon neutrino energy of 60 GeV, with its momentum approximated as p ~ E/c due to the negligible mass of neutrinos. The discussion highlights the necessity to determine the direction of the muon neutrino's momentum, as momentum is a vector quantity. Additionally, the problem provides more information than needed, raising questions about the relevance of the given angle. Ultimately, the angle of the muon neutrino was calculated to be 10.8 degrees with respect to the incoming muon direction.
Rayan
Messages
17
Reaction score
1
Misplaced Homework Thread
An electron and muon collide head-on, with energies 35 GeV and 50 GeV, the following reaction takes place:

$$ e^- + \mu^+ \rightarrow \nu_e + \nu_{\vec{\mu}} $$If the electron neutrino has energy of 25 GeV, and collides at angle 20 with respect to incoming electron direction, what is the muon neutrinos momentum?

Now I calculated the center of mass frame energy, which happened to be 84 GeV, and I was thinking that I can use energy conservation to determine muon neutrinos energy:

E = 60 GeV

and then since neutrinos mass is very small it can be neglected, so E ~ pc and therefore p~E/c .

But why is the angle between electron and electron neutrino given? Am I missing something here?
 
Physics news on Phys.org
You calculated the magnitude of the momentum. The momentum is a vector and you should find its direction.

It's interesting that the problem statement gives you more information than required to solve the problem. Just giving the angle or the energy would be sufficient.
 
mfb said:
You calculated the magnitude of the momentum. The momentum is a vector and you should find its direction.

It's interesting that the problem statement gives you more information than required to solve the problem. Just giving the angle or the energy would be sufficient.
You are totally right! I did calculate the angle and got

$$\theta=10.8^{\circ}$$

with respect to the direction of incoming muon.

But I did indeed use the energy in my calculation! I can't really think of a way to determine the angle without using it?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top