More rigorous Euler-Lagrange derivation

Click For Summary
SUMMARY

The forum discussion centers on the rigorous derivation of the Euler-Lagrange equations from variational principles. The functional is defined as ##S= \int L(q(t), \dot{q}(t), t) dt##, where ##\dot{q} = \frac{dq}{dt}##. The participants clarify that ##\delta q## represents a deviation in the path within configuration space, leading to the conclusion that the Euler-Lagrange equations are derived from the condition that the variation of the action, ##\delta S##, must vanish for all variations of the path. The discussion references key resources, including V. I. Arnold's "Mathematical Methods of Classical Mechanics" and papers by Paweł Urbański for further reading.

PREREQUISITES
  • Understanding of variational principles in mechanics
  • Familiarity with Lagrangian mechanics and the Lagrangian function
  • Knowledge of calculus of variations
  • Basic concepts of configuration space and tangent bundles
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equations in detail
  • Explore the concept of tangent bundles in differential geometry
  • Read V. I. Arnold's "Mathematical Methods of Classical Mechanics" for a rigorous treatment
  • Investigate non-holonomic constraints and their implications in mechanics
USEFUL FOR

Students and professionals in physics, particularly those focusing on classical mechanics, mathematical physics, and anyone seeking a deeper understanding of variational principles and the Euler-Lagrange equations.

romsofia
Gold Member
Messages
600
Reaction score
330
TL;DR
What really is the “variation”?
Sorry if there are other threads on this, but after a discussion with a friend on this (im in the mountains, so no books, and my googlefu isn't helping), I realize that my understanding of the variational principles arent exactly... great! So, maybe some one can help.

Start with a functional defined by: ##S= \int L(q(t), \dot{q}(t), t) dt## where ##\dot{q} = \frac{dq}{dt} ## we “vary” the functional, in the following manner: ##\delta S = \int (\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q})dt##

And so, from there i know how to get the EL to pop out from integration and some arguments about boundary conditions. The issue he had, and where I am also lacking is, what REALLY is that ##\delta##?

I've always treated it similar to a derivative, and essentially all we are doing is taking a chain rule when doing ##\delta S##, but then i can't really justify the ##\delta q## since the chain rule in that spot would be ##\frac{dq}{dt}##.

Basic question that I should know(it is just calculus of variations), but better to finally learn it properly, than go off by handwaving because my muscle memory can write it down properly!
 
Physics news on Phys.org
##\delta q## is simply a deviation of the path in configuration space from the trajectory of the particle, which is defined as the stationary path of the action.

In Hamilton's principle the variation is over all paths with fixed endpoints ##q(t_1)## and ##q(t_2)##, and time is not varied. From this you get
$$\delta \dot{q}=\mathrm{d}_t \delta q.$$
Then you have
\begin{equation*}
\begin{split}
\delta S &= \delta \int_{t_1}^{t_2} \mathrm{d} t L(q,\dot{q},t)\\
&=\int_{t_1}^{t_2} \mathrm{d} t \left (\delta q \cdot \frac{\partial L}{\partial q} + \delta \dot{q} \cdot \frac{\partial L}{\partial \dot{q}} \right) \\
&=\int_{t_1}^{t_2} \mathrm{d} t \delta q \cdot \left ( \cdot \frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{q}} \right) + \delta q(t_2) \cdot \left . \frac{\partial L}{\partial \dot{q}}\right|_{t=t_2} - \delta q(t_1) \cdot \left . \frac{\partial L}{\partial \dot{q}} \right |_{t=t_1}.
\end{split}
\end{equation*}
Since by definition ##\delta q(t_1)=\delta q(t_2)=0## the boundary terms vanish and you finally get
$$\delta S=\int_{t_1}^{t_2} \mathrm{d} t \delta q \cdot \left ( \frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{q}} \right).$$
Since this must hold for all functions ##\delta q(t)## the term in the parentheses must vanish, which leads to the Euler-Lagrange Equations,
$$\frac{\partial L}{\partial q} = \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{q}}.$$
For a mathematically rigorous treatment of analytical mechanics, see

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer (1989)
 
  • Informative
  • Like
Likes   Reactions: romsofia and Delta2
romsofia said:
And so, from there i know how to get the EL to pop out from integration and some arguments about boundary conditions. The issue he had, and where I am also lacking is, what REALLY is that ##\delta##?

So, as you pointed out, the action is a functional of paths in the ##(q,\dot{q})## space, the tangent bundle of configuration space.

A path is a function from the real numbers to this tangent bundle ##\mathbb{R}\ni t\rightarrow(q(t),\dot{q}(t))##.
We can define a slightly different path by ##q^{'}(t)=q(t)+\varepsilon\eta(t)## so that ##\dot{q}^{'}(t)=\dot{q}(t)+\varepsilon\dot{\eta}(t)##. Notice that ##\delta q=\varepsilon\eta(t)## and ##\delta\dot{q}=\varepsilon\dot{\eta}(t)## represents how far away is the new path from the old one i.e., how much we have deformed the original path.

We can now ask, what is the value of the action for this new path? We can find it by a Taylor expansion of the Lagrangian
$$
S' =\int_{t_{1}}^{t_{2}}L(q^{'}(t),\dot{q}^{'}(t))dt=\int_{t_{1}}^{t_{2}}L(q(t)+\varepsilon\eta(t),\dot{q}(t)+\varepsilon\dot{\eta}(t))dt
\approx\int_{t_{1}}^{t_{2}}dt\left[L(q(t),\dot{q}(t))+\varepsilon\eta(t)\frac{\partial L}{\partial q}+\varepsilon\dot{\eta}(t))\frac{\partial L}{\partial\dot{q}}\right]dt$$

So, we can conclude that the first order variation of the action is
$$\delta S=\int_{t_{1}}^{t_{2}}\left(\varepsilon\eta(t)\frac{\partial L}{\partial q}+\varepsilon\dot{\eta}(t))\frac{\partial L}{\partial\dot{q}}\right)dt=\int_{t_{1}}^{t_{2}}\left(\frac{\partial L}{\partial q}\delta q+\frac{\partial L}{\partial\dot{q}}\delta\dot{q}\right)dt$$
 
Last edited:
  • Love
  • Like
Likes   Reactions: vanhees71 and romsofia
Thanks for your help, I'll read them in more detail, and see if I have any questions! The discussion of configuration spaces is bringing back memories of non-holonomic constraints for some reason!
 
  • Like
Likes   Reactions: vanhees71
If it comes to non-holonomic constraints, don't use the distorted 3rd edition of Goldstein's textbook. The 2nd edition is fine though.
 
  • Like
Likes   Reactions: PhDeezNutz

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
829
  • · Replies 7 ·
Replies
7
Views
2K