Motivation for Lagrangian mechanics

AI Thread Summary
Lagrangian mechanics offers an alternative to Newtonian mechanics by focusing on the possible paths a system can take between configurations, using variational techniques to determine the actual physical path. The Lagrangian, a function of position and velocity, characterizes the dynamics of a system in configuration space. The action, defined as the integral of the Lagrangian over time, quantifies each path the system can take. To find the true physical path, the principle of stationary action is applied, leading to the Euler-Lagrange equation, which describes the motion of the system. This approach allows for a more flexible analysis of dynamics without explicitly calculating forces, relying instead on the relationship between potential and kinetic energy.
Frank Castle
Messages
579
Reaction score
23
I know how to implement Lagrangian mechanics at a mathematical level and also know that it follows the approach of calculus of variations (i.e. optimisation of functionals, finding their stationary values etc.), however, I'm unsure whether I've grasped the physical intuition behind the formulation correctly. In the following, I have written down how I "see" it and hope that people will be able to give me feedback on whether I have understood it correctly at all, or not.

Instead of determining all the forces that are acting on a particular system and then solving Newton's 2nd law to determine the physical path of the system, we instead take a different approach by considering the possible paths that a system could take between two different configurations and employ variational techniques to determine the actual physical path the system takes between these two points.
This is advantageous over the Newtonian approach since we don't have to worry about all the different forces acting on the system and avoid the awkwardness of changing between Euclidean coordinates and other curvilinear coordinate systems encountered in solving the equations of motion in Newtonian mechanics, since such a variational approach is coordinate independent and so we can judiciously choose a set of "generalised" coordinates, ##\lbrace q^{i}\rbrace## that enable one to solve the problem as efficiently as possible.

To use such an approach we first need a function that characterises the dynamics of a physical system for every possible configuration that it could assume. Empirically, we know that the physical state of a system, at a given instant in time, is fully specified through knowledge of the positions, ##\lbrace q^{i}\rbrace## and velocities, ##\lbrace \dot{q}^{i}\rbrace## of all the constituent components of the system at that instant. Thus, such a function, which we call the Lagrangian of the system, must depend on the state of the system at each point in its so-called configuration space. A priori, before considering any particular path of the system through configuration space, the positions and velocities defining the state of the system at a given instant can be chosen independently. This implies that the Lagrangian should be a function of both position and velocity, i.e. ##\mathcal{L}=\mathcal{L}(q_{i},\dot{q}_{i})##.

Given this, we now wish to distinguish each path that the system can take through configuration space. We do so by assigning a number to each path. This is achieved by defining a functional, ##S##, the action, which maps each given path, ##q(t)=(q_{1}(t),\ldots ,q_{n}(t))## that the system can take, to a real number. Since the Lagrangian evaluated along a given path characterises the dynamics of the system at each instant in time as the system moves along the path, we define the action in terms of this, i.e. $$S\left[q(t)\right]=\int_{t_{i}}^{t_{f}}\mathcal{L}(q(t),\dot{q}(t))dt$$ where ##t_{i}## and ##t_{f}## are the initial and final instants in time, enabling us to quantify the end points of the section of the path we are considering. Note also that we have now evaluated the Lagrangian along a particular path such that ##\mathcal{L}(q(t),\dot{q}(t))##, and ##q## and ##\dot{q}## are no longer independent, but related by ##\dot{q}(t)=\frac{d}{dt}q(t)##.

With this initial formalism in place, to find the true physical path of the system between two configurations (at two instants in time ##t_{i}## and ##t_{f}##) we invoke a variational principle. This is the so-called principle of stationary action, motivated by empirical observations, it states that the physical path taken by a given system (through configuration space) is the one that extremises the action, ##S## of the system. Thus, we take a putative curve ##\bar{q}(t)## with fixed end points at ##\bar{q}(t_{i})## and ##\bar{q}(t_{f})##, and make variations of the path in the neighbourhood of this curve between these two end points. This induces a variation in the action, and we require that this variation vanishes at first-order. We thus find that for ##\bar{q}(t)## to be the physical path taken by the system (i.e. an extremal path of ##S##), it must satisfy the Euler-Lagrange equation $$\frac{\partial\mathcal{L}}{\partial q}-\frac{d}{dt}\left(\frac{\partial\mathcal{L}}{\partial \dot{q}}\right)=0$$ which is the equation of motion for the system.

Sorry this is long-winded, but I really want to check that I understand the concept correctly (at least at an intuitive level), so I have put down my thoughts on the subject.
 
Physics news on Phys.org
I think you have understood it correctly and expressed it properly. I would just like to say that this force but it is not so approach avoids the concept of force. But the fact is otherwise. You cannot write the potential function in terms of coordinates unless you know the nature of interaction or the nature of force.
 
Let'sthink said:
I think you have understood it correctly and expressed it properly. I would just like to say that this force but it is not so approach avoids the concept of force. But the fact is otherwise. You cannot write the potential function in terms of coordinates unless you know the nature of interaction or the nature of force.

Thanks for taking a look.
You're right, I didn't word that part particularly well. What I meant was that you don't need to explicitly right out the forces using the Lagrangian formalism; the dynamics can be deduced through knowledge of the how the force affects the potential and also the kinetic energy of the system.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top