I am trying to move water using a vacuum pump. I have a vacuum pump hooked up to a tank that has one inlet, one exit with a length of hose and check valves on both. What I am doing is creating a vacuum in the tank, causing water to fill the tank. Then using the pump to generate pressure in the tank to discharge the water. I know the pressures/vacuum required to lift/push the water for my suction and discharge heights. As well as the flow rate of the pump. What I need to do is calculate the flow rate of the water into/out of the tank. My pump supplier has said to use Boyle's Law (P1V1=P2V2). The time this yeilds is close to real world results, however, in my mind it doesn't add up. It would make sense if I was moving air, but I am using the air to move water. The flow rate of the water has to be the same at both ends of the hose, as water will not compress or expand. I have since started trying to use Bernoulli's Equation (V^2/2+P/d+gZ=const), this makes more sense as it relates velocity (which leads to flow rate) to pressure. Since I am using pressure differential to move the water, I feel this is the equation I should be using. When I do all the calculations the results from Bernoulli's is way faster then the real world expermental data I have. If anyone could give any insight or a push in the right direction that would be great.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Moving water using pressure/vacuum

**Physics Forums | Science Articles, Homework Help, Discussion**