I would like to check my work with you all.(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

Let

[itex]\vec{u} = 2\vec{i}+\vec{j}[/itex],

[itex]\vec{v} = \vec{i}+\vec{j}[/itex], and

[itex]\vec{w} = \vec{i}-\vec{j}[/itex].

Find scalarsaandbsuch that [itex]\vec{u} =[/itex]a[itex]\vec{v}+[/itex]b[itex]\vec{w}[/itex].

2. Relevant equations

Standard Unit Vectors:

[itex]\vec{i} = <1,0>[/itex].

[itex]\vec{j} = <0,1>[/itex].

3. The attempt at a solution

Compute vectors:

[itex]\vec{u} = 2<1,0>+<0,1>=<2,1>[/itex].

[itex]\vec{v} = <1,0>+<0,1>=<1,1>[/itex].

[itex]\vec{w} = <1,0>-<0,1>=<1,-1>[/itex].

Setup Scalars:

[itex]<2,1> = a<1,1>+b<1,-1>[/itex].

[itex]<2,1> = <a,a>+<b,-b>[/itex].

[itex]<2,1> = <a+b,a-b>[/itex].

Find Scalars:

[itex]a+b = 2[/itex].

[itex]a-b = 1[/itex].

Thus, a = 3/2 and b = 1/2.

Final answer:

[itex]\vec{u} = \frac{3}{2}\vec{v}+\frac{1}{2}\vec{w}[/itex].

Note: Sorry my vector arrows aren't lining-up very well.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Multi-Variable Calculus: Linear Combination of Vectors

**Physics Forums | Science Articles, Homework Help, Discussion**