I would like to check my work with you all.(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

Let

[itex]\vec{u} = 2\vec{i}+\vec{j}[/itex],

[itex]\vec{v} = \vec{i}+\vec{j}[/itex], and

[itex]\vec{w} = \vec{i}-\vec{j}[/itex].

Find scalarsaandbsuch that [itex]\vec{u} =[/itex]a[itex]\vec{v}+[/itex]b[itex]\vec{w}[/itex].

2. Relevant equations

Standard Unit Vectors:

[itex]\vec{i} = <1,0>[/itex].

[itex]\vec{j} = <0,1>[/itex].

3. The attempt at a solution

Compute vectors:

[itex]\vec{u} = 2<1,0>+<0,1>=<2,1>[/itex].

[itex]\vec{v} = <1,0>+<0,1>=<1,1>[/itex].

[itex]\vec{w} = <1,0>-<0,1>=<1,-1>[/itex].

Setup Scalars:

[itex]<2,1> = a<1,1>+b<1,-1>[/itex].

[itex]<2,1> = <a,a>+<b,-b>[/itex].

[itex]<2,1> = <a+b,a-b>[/itex].

Find Scalars:

[itex]a+b = 2[/itex].

[itex]a-b = 1[/itex].

Thus, a = 3/2 and b = 1/2.

Final answer:

[itex]\vec{u} = \frac{3}{2}\vec{v}+\frac{1}{2}\vec{w}[/itex].

Note: Sorry my vector arrows aren't lining-up very well.

**Physics Forums - The Fusion of Science and Community**

# Multi-Variable Calculus: Linear Combination of Vectors

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Multi-Variable Calculus: Linear Combination of Vectors

Loading...

**Physics Forums - The Fusion of Science and Community**