Multivariable Calculus proof for Optics

AI Thread Summary
The discussion revolves around proving identities related to multivariable calculus in optics, specifically using the divergence theorem. Part A addresses the challenge of deriving the identity by treating r' as a constant vector, with uncertainty about handling the denominator. Part B expresses confusion about the next steps, while Part C applies the divergence theorem to relate an integral to a delta function, noting that the integral's value depends on whether it contains the point r' = r. The conclusion emphasizes that the integrand is not regular, as it is expected to be proportional to a delta function, indicating a singularity at that point.
Blanchdog
Messages
56
Reaction score
22
Homework Statement
Prove that the identity ##\nabla_{\textbf{r}} \frac{1}{|\textbf{r} - \textbf{r}'|} = -\frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## where ##\nabla_{r}## operates only on r, treating r' as a constant vector.

Next, prove that ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3} = 0## except at r = r' where a singularity situation occurs.

Finally, use the divergence theorem to show that the function ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## is ## 4\pi## times the threee-dimensional delta function: ##\delta^3(\textbf{r'} - \textbf{r}) \equiv \delta(x' - x)\delta(y' - y)\delta(z' - z)##
Relevant Equations
The Dirac delta function is defined indirectly as ##f(t) = \int_{-\infty}^{\infty} f(t') \delta (t' - t) dt' ##
The divergence theorem for a vector function F is ##\oint_{S} F \cdot \hat n~dA = \int_V \nabla \cdot F~dV##
Part A)

For part A I forgo breaking down the identity into it's component x, y, and z parts, and just take the r derivative treating r' as a constant vector. This seems to give the right answer, but to be entirely honest I'm not sure how I'd go about doing this component by component. I figure I'd replace the numerator with x - x' (or whatever direction I'm working with) but what would I do with the denominator? Would I just take the components there too, would I need to use the distance equation?

Part B) Really not sure what to do with this part.

Part C)

By the divergence theorem, I get $$\oint_{S} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3} \cdot \hat n~dA = \int_V \cdot \nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}~dV$$

From part B, the argument in the integral on the right side must be zero except at ##r' = r##, which makes both sides of the relation zero except at that point. I'm sure there's a way to relate that to a delta function somehow but I'm not sure what it is.
 
Physics news on Phys.org
Blanchdog said:
Homework Statement:: Prove that the identity ##\nabla_{\textbf{r}} \frac{1}{|\textbf{r} - \textbf{r}'|} = -\frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## where ##\nabla_{r}## operates only on r, treating r' as a constant vector.

Next, prove that ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3} = 0## except at r = r' where a singularity situation occurs.

Finally, use the divergence theorem to show that the function ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## is ## 4\pi## times the threee-dimensional delta function: ##\delta^3(\textbf{r'} - \textbf{r}) \equiv \delta(x' - x)\delta(y' - y)\delta(z' - z)##
Relevant Equations:: The Dirac delta function is defined indirectly as ##f(t) = \int_{-\infty}^{\infty} f(t') \delta (t' - t) dt' ##
The divergence theorem for a vector function F is ##\oint_{S} F \cdot \hat n~dA = \int_V \nabla \cdot F~dV##

From part B, the argument in the integral on the right side must be zero except at r′=r, which makes both sides of the relation zero except at that point. I'm sure there's a way to relate that to a delta function somehow but I'm not sure what it is.
What does this tell you about how the integral depends on the volume V?
 
It will be beneficial for you to be able to decipher the symbols. It's really easy when you get used to the notation. You write
##\vec r=x~\hat x+y~\hat y+z~\hat z##
##\vec r'=x'~\hat x+y'~\hat y+z'~\hat z##
Then
##\vec r-\vec r'=(x-x')~\hat x+(y-y')~\hat y+(z-z')~\hat z##
the magnitude of the difference is the square root of the sum of the squares:
##|\vec r-\vec r'|=\left[(x-x')^2+(y-y')^2+(z-z')^2\right]^{1/2}##
The denominator is simply the magnitude cubed:
##|\vec r-\vec r'|^3=\left[(x-x')^2+(y-y')^2+(z-z')^2\right]^{3/2}.##
 
Orodruin said:
What does this tell you about how the integral depends on the volume V?
That the volume V is arbitrary, the only thing that matters is whether it contains the point r' = r, and so the result of the integral is really just the value of the function at the point r' = r? But that seems weird since it looks like that would set the left side of the equation to zero. Am I on the right track at all?
 
Blanchdog said:
That the volume V is arbitrary, the only thing that matters is whether it contains the point r' = r, and so the result of the integral is really just the value of the function at the point r' = r? But that seems weird since it looks like that would set the left side of the equation to zero. Am I on the right track at all?
Not really, no. You are assuming that the volume integrand is regular, but you know you are asked to show that it is proportional to a delta function.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top