Multivariable Calculus proof for Optics

Click For Summary
SUMMARY

The forum discussion focuses on proving identities related to multivariable calculus in optics, specifically using the divergence theorem. The key identity to prove is $$\nabla_{\textbf{r}} \frac{1}{|\textbf{r} - \textbf{r}'|} = -\frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}$$, treating r' as a constant vector. The discussion highlights the relationship between the divergence theorem and the Dirac delta function, concluding that the integral's value depends solely on whether it contains the point r' = r. The participants express uncertainty regarding the treatment of components and the implications of singularities in the context of the delta function.

PREREQUISITES
  • Understanding of multivariable calculus concepts, particularly the divergence theorem.
  • Familiarity with vector calculus notation and operations, such as gradients and integrals.
  • Knowledge of the Dirac delta function and its properties in mathematical physics.
  • Experience with optical physics and its mathematical formulations.
NEXT STEPS
  • Study the application of the divergence theorem in various contexts, particularly in electromagnetism.
  • Learn about the properties and applications of the Dirac delta function in physics.
  • Explore advanced topics in multivariable calculus, including singularities and their implications in integrals.
  • Review vector calculus identities and their proofs to strengthen foundational knowledge.
USEFUL FOR

This discussion is beneficial for physics students, mathematicians, and researchers working in optics or fields requiring advanced calculus techniques, particularly those interested in the applications of the divergence theorem and delta functions in theoretical physics.

Blanchdog
Messages
56
Reaction score
22
Homework Statement
Prove that the identity ##\nabla_{\textbf{r}} \frac{1}{|\textbf{r} - \textbf{r}'|} = -\frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## where ##\nabla_{r}## operates only on r, treating r' as a constant vector.

Next, prove that ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3} = 0## except at r = r' where a singularity situation occurs.

Finally, use the divergence theorem to show that the function ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## is ## 4\pi## times the threee-dimensional delta function: ##\delta^3(\textbf{r'} - \textbf{r}) \equiv \delta(x' - x)\delta(y' - y)\delta(z' - z)##
Relevant Equations
The Dirac delta function is defined indirectly as ##f(t) = \int_{-\infty}^{\infty} f(t') \delta (t' - t) dt' ##
The divergence theorem for a vector function F is ##\oint_{S} F \cdot \hat n~dA = \int_V \nabla \cdot F~dV##
Part A)

For part A I forgo breaking down the identity into it's component x, y, and z parts, and just take the r derivative treating r' as a constant vector. This seems to give the right answer, but to be entirely honest I'm not sure how I'd go about doing this component by component. I figure I'd replace the numerator with x - x' (or whatever direction I'm working with) but what would I do with the denominator? Would I just take the components there too, would I need to use the distance equation?

Part B) Really not sure what to do with this part.

Part C)

By the divergence theorem, I get $$\oint_{S} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3} \cdot \hat n~dA = \int_V \cdot \nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}~dV$$

From part B, the argument in the integral on the right side must be zero except at ##r' = r##, which makes both sides of the relation zero except at that point. I'm sure there's a way to relate that to a delta function somehow but I'm not sure what it is.
 
Physics news on Phys.org
Blanchdog said:
Homework Statement:: Prove that the identity ##\nabla_{\textbf{r}} \frac{1}{|\textbf{r} - \textbf{r}'|} = -\frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## where ##\nabla_{r}## operates only on r, treating r' as a constant vector.

Next, prove that ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3} = 0## except at r = r' where a singularity situation occurs.

Finally, use the divergence theorem to show that the function ##\nabla_{\textbf{r}} \frac{(\textbf{r} - \textbf{r}')}{|\textbf{r} - \textbf{r}'|^3}## is ## 4\pi## times the threee-dimensional delta function: ##\delta^3(\textbf{r'} - \textbf{r}) \equiv \delta(x' - x)\delta(y' - y)\delta(z' - z)##
Relevant Equations:: The Dirac delta function is defined indirectly as ##f(t) = \int_{-\infty}^{\infty} f(t') \delta (t' - t) dt' ##
The divergence theorem for a vector function F is ##\oint_{S} F \cdot \hat n~dA = \int_V \nabla \cdot F~dV##

From part B, the argument in the integral on the right side must be zero except at r′=r, which makes both sides of the relation zero except at that point. I'm sure there's a way to relate that to a delta function somehow but I'm not sure what it is.
What does this tell you about how the integral depends on the volume V?
 
It will be beneficial for you to be able to decipher the symbols. It's really easy when you get used to the notation. You write
##\vec r=x~\hat x+y~\hat y+z~\hat z##
##\vec r'=x'~\hat x+y'~\hat y+z'~\hat z##
Then
##\vec r-\vec r'=(x-x')~\hat x+(y-y')~\hat y+(z-z')~\hat z##
the magnitude of the difference is the square root of the sum of the squares:
##|\vec r-\vec r'|=\left[(x-x')^2+(y-y')^2+(z-z')^2\right]^{1/2}##
The denominator is simply the magnitude cubed:
##|\vec r-\vec r'|^3=\left[(x-x')^2+(y-y')^2+(z-z')^2\right]^{3/2}.##
 
Orodruin said:
What does this tell you about how the integral depends on the volume V?
That the volume V is arbitrary, the only thing that matters is whether it contains the point r' = r, and so the result of the integral is really just the value of the function at the point r' = r? But that seems weird since it looks like that would set the left side of the equation to zero. Am I on the right track at all?
 
Blanchdog said:
That the volume V is arbitrary, the only thing that matters is whether it contains the point r' = r, and so the result of the integral is really just the value of the function at the point r' = r? But that seems weird since it looks like that would set the left side of the equation to zero. Am I on the right track at all?
Not really, no. You are assuming that the volume integrand is regular, but you know you are asked to show that it is proportional to a delta function.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K