Is PBS's Layman Explanation of E=mc^2 Accurate?

  • Thread starter Thread starter trewsx7
  • Start date Start date
trewsx7
Messages
10
Reaction score
1
Newbie here with a question on an article I read on the PBS website regarding the e=mc^2 equation and whether or not it is factualy accurate (yet extremeley simplified) for a non-mathematical layman's description of the equation.


Regarding the reasoning for the speed-of-light in the equation, the article in part reads:

"So why would you have to multiply the mass by the speed of light to determine how much energy is bound up inside it? The reason is that whenever you convert part of a piece of matter to pure energy, the resulting energy is by definition moving at the speed of light. Pure energy is electromagnetic radiation—whether light or X-rays or whatever—and electromagnetic radiation travels at a constant speed of roughly 670,000,000 miles per hour."


The article, of course, then explains the reasons for squaring and so forth, but in regards to the aforementioned paragraph on c, is it correct on a layman's level? If not, what parts of the preceding description is wrong (or right)?

Thanks
 
Physics news on Phys.org
Roughly. There's an explanation over at http://en.wikipedia.org/wiki/Mass–energy_equivalence under the section "Einstein: Mass–energy equivalence".

The derivation I remember has to do with the work energy theorem, but I can't for the life of me remember it. I'll have to consult an old first-year text.
 
trewsx7 said:
… the article in part reads:

"So why would you have to multiply the mass by the speed of light to determine how much energy is bound up inside it? The reason is that whenever you convert part of a piece of matter to pure energy, the resulting energy is by definition moving at the speed of light."

… but in regards to the aforementioned paragraph on c, is it correct on a layman's level? If not, what parts of the preceding description is wrong (or right)?

Hi trewsx7! :smile:

I think that part of the article is rubbish. :frown:

The simple explanation is that energy has dimensions of mass times velocity-squared.

In Newtonian dynamics, energy was proportional to 1/2mv², which is zero for zero velocity (so the rest energy is zero), and already incorporates a velocity-squared.

In relativity, energy is proportional to 1/√(1 - v²/c²), which is not zero for zero velocity (so the rest energy is not zero), and is a dimensionless number, and so must be multiplied by a velocity-squared constant, which is obviously the rest energy.

Furthermore, 1/√(1 - v²/c²) = 1 + 1/2v²/c² for small v, so the constant must be mc² to agree with Newtonian dynamics and obvious low-speed experiments.

So the rest energy must have a factor of c². :smile:
 
Last edited:
trewsx7 said:
Newbie here with a question on an article I read on the PBS website regarding the e=mc^2 equation and whether or not it is factualy accurate (yet extremeley simplified) for a non-mathematical layman's description of the equation.


Regarding the reasoning for the speed-of-light in the equation, the article in part reads:

"So why would you have to multiply the mass by the speed of light to determine how much energy is bound up inside it? The reason is that whenever you convert part of a piece of matter to pure energy, the resulting energy is by definition moving at the speed of light. Pure energy is electromagnetic radiation—whether light or X-rays or whatever—and electromagnetic radiation travels at a constant speed of roughly 670,000,000 miles per hour."


The article, of course, then explains the reasons for squaring and so forth, but in regards to the aforementioned paragraph on c, is it correct on a layman's level? If not, what parts of the preceding description is wrong (or right)?

Thanks
To me this sounds completely wrong. The equation is valid even when massive particles are produced and they do not move at the speed of light at all. I am sorry, but it sounds like someoen trying to justify an equation by using a totally unjustified argument. Sometimes people use "layman arguments" to explain some aspects of physics which are more or less correct but still useful to get the basic idea across. This example is completely wrong even at the simplest qualitative level. I am surprised of that from PBS.
 
trewsx7 said:
Newbie here with a question on an article I read on the PBS website regarding the e=mc^2 equation and whether or not it is factualy accurate (yet extremeley simplified) for a non-mathematical layman's description of the equation.
Note: That expression only holds in the special case of a closed system. The mass and inertial energy of a rod under stress may not obey that relationship.

Pete
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top