Need help in understanding W paremeter for homogeneous coordinates

null void
Messages
102
Reaction score
1
First I would like to apologize first if this is the wrong place for posting this problem.

I don't really understand what is the importance of w in the homogeneous coordinate (x,y,z, w).

One of the example i have read is about a parrallel line extended to infinity, and both line would meet at w=0. But what is the difference between (x,y,z, 0.5) and (x,y,z, 0) ? Isn't how the distance(in perspective) between 2 points on both lines is determined by z? I mean the farther the closer they get, why do we still need w?
 
Mathematics news on Phys.org
OH dear, I don't think this is general math is it? :(
 
null void said:
First I would like to apologize first if this is the wrong place for posting this problem.

I don't really understand what is the importance of w in the homogeneous coordinate (x,y,z, w).

One of the example i have read is about a parrallel line extended to infinity, and both line would meet at w=0. But what is the difference between (x,y,z, 0.5) and (x,y,z, 0) ? Isn't how the distance(in perspective) between 2 points on both lines is determined by z? I mean the farther the closer they get, why do we still need w?

So you're learning CG right? Rest assured that CG programmers don't learn this in a mathematical sense. It's just used as a little trick to make vertex transformation easier for the processor. If you write out your transformation matrix, you'll see what the w component does. You'll want it to be 1 for position and 0 for normals, binormals and tangents, but this is implicitly assumed by modern shader code anyway.

After applying a transformation that includes a perspective projection to a position vector, you'll end up with a w component that isn't 1. You'll just divide your new position through by it to get it back to 1 and give view space coordinates.

That's pretty much all you ever need to care about homogeneous coordinates in CG so I'd recommend that you learn this as CG rather than as maths. That said, if you really want to learn homogeneous coordinates properly then go ahead, but you'll be in a very small minority of graphics programmers.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top