MHB Nested Matrix Elements: Define \Gamma^{\dagger}?

  • Thread starter Thread starter topsquark
  • Start date Start date
  • Tags Tags
    Elements Matrix
topsquark
Science Advisor
Homework Helper
Insights Author
MHB
Messages
2,020
Reaction score
843
I posted this elsewhere and was sort of able to figure out a result myself, but 1) I didn't do it right, and 2) No one answered it anyway. I thought I'd give it a shot over here.

The problem deals with nested matrices. The gamma matrices can be found here.

My question deals with a "vector" of these gamma matrices:
Define
[math]\Gamma = \left ( \begin{matrix} \gamma ^0 \\ \gamma ^1 \\ \gamma ^2 \\ \gamma ^3 \end{matrix} \right )[/math]

What is [math]\Gamma ^{\dagger}[/math] ? (The dagger is the conjugate transpose.)

So far I've been able to treat [math]\Gamma [/math] as a 4-vector and so we should have
[math]\Gamma = \left ( \begin{matrix} A \\ B \\ C \\ D \end{matrix} \right )[/math]

[math]\Gamma ^{\dagger} = \left ( \begin{matrix} A^* & - B^* & - C^* & - D^* \end{matrix} \right )[/math]

(Treating [math]\Gamma[/math] as a SR 4-vector gives the negative signs.)

But: Should [math]\Gamma ^{\dagger} = \left ( \begin{matrix} A^{\dagger} & - B^{\dagger} & - C^{\dagger} & - D^{\dagger} \end{matrix} \right )[/math] instead?

For the work I'm doing I don't care about the [math]\gamma^2[/math] part so either method yields the same result for me. But I was wondering if there is a general rule for this sort of thing.

Thanks!

-Dan
 
Physics news on Phys.org
Hey Dan,

The inner product of a finite dimensional space $\mathbb C^n$ has the property that:
$$\langle x, y \rangle = y^\dagger G x$$
where $G$ is the Gramian matrix, a hermitian positive-definite matrix.

In our case $G$ is the matrix of the Minkowski metric.
In particular that means that the minus signs that come from the Minkowski metric are not part of the conjugate transpose.Furthermore, we have the property that $LL^\dagger$ and $L^\dagger L$ are hermitian positive-definite.
So $\Gamma^\dagger$ must be such that we have this property.
Suppose we pick $\Gamma ^{\dagger} = \begin{bmatrix} \bar A & \bar B & \bar C& \bar D \end{bmatrix}$.
Then:
$$\Gamma^\dagger \Gamma = \begin{bmatrix} \bar A & \bar B & \bar C& \bar D \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \bar A A + \bar B B + \bar C C + \bar D D$$
(I'm using $\bar A$ for the component wise conjugate instead of $A^*$ to avoid the ambiguity with the conjugate transpose $A^\dagger$.)
We cannot guarantee that this will be hermitian unless for instance the matrices are symmetric.
To ensure the hermitian positive-definite property, I believe we need to pick $\Gamma^\dagger$ such that:
$$\Gamma^\dagger \Gamma = \begin{bmatrix} A^\dagger & B^\dagger & C^\dagger & D^\dagger \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = A^\dagger A + B^\dagger B + C^\dagger C + D^\dagger D$$
At the very least we can be sure that this will be hermitian positive-definite.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top