Neural Network

  • Thread starter hisham.i
  • Start date
  • #1
hisham.i
176
2
In neural network the learning algorithm ends when the mean squared error value is less than or equal to a value we have precised.
But i don't understand why we are comparing with the mean squared error and not the mean error?
What does the mean squared error represent?
 

Answers and Replies

  • #2
JaredJames
2,817
22
I'm not sure of the exact answer you require, but if it's anything like using RMS values it's pretty straight forward.

Let's say you have two error values: -1 and 1

The mean error value is 0.
The mean squared error is 1.

If I remember correctly, it is because you have alternating positive and negative values and no matter what you do you end up with 0 as the mean if you simply take the average of the exact values.

For example, with alternating current of 230V (UK standard supply) you have a sin wave with a maximum of +320V and a minimum of -320V. If you average these values you get an average voltage out of your wall socket of 0V - this is of no use to you.

So you use an RMS (Root Mean Squared) value to get a useful value.

In this case you have +320V and -320V. So you square them (+3202 and -320V-2).
Add the squared values together (+320V2+-320V2).
Square root them and then take the mean (Sqrt(+320V2+-320V2))/2.

This then gives you the RMS voltage. For the UK this is ~230V.

So by using a value such as your "squared error" you get a useful answer instead of 0 every time.
 
  • #3
Phrak
4,265
2
In neural network the learning algorithm ends when the mean squared error value is less than or equal to a value we have precised.
But i don't understand why we are comparing with the mean squared error and not the mean error?
What does the mean squared error represent?

I'm sure you mean the root mean squared error meaning the root of the averaged sum of the squared differences from the averaged value.
 

Suggested for: Neural Network

  • Last Post
Replies
16
Views
506
Replies
12
Views
599
Replies
18
Views
429
Replies
0
Views
303
  • Last Post
Replies
23
Views
4K
Replies
23
Views
2K
Replies
6
Views
3K
Top