- #1
- 2,815
- 607
Today I heard the claim that its wrong to use Stokes(more specificly divergence/Gauss) theorem when trying to get the Einstein equations from the Einstein-Hilbert action and the correct way is using the non-Abelian stokes theorem. I can't give any reference because it was in a talk. It was the first time I heard about the non-Abelian Stokes theorem, so I checked and found this about it. But it seems this should be applied only when we're trying to integrate a e.g. matrix valued quantity or any other quantity that can be given a non-Abelian group structure. I understand this when we're dealing with non-Abelian gauge fields but does it apply to Ricci tensor or tensors on ## \mathbb R^n ## in general? Or...maybe the tensor structure is itself a non-Abelian group structure? or what?
Thanks
Thanks